#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define int long long
#define st first
#define nd second
#define rd third
#define FOR(i, a, b) for(int i =(a); i <=(b); ++i)
#define RE(i, n) FOR(i, 1, n)
#define FORD(i, a, b) for(int i = (a); i >= (b); --i)
#define REP(i, n) for(int i = 0;i <(n); ++i)
#define VAR(v, i) __typeof(i) v=(i)
#define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i)
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
#define __builtin_ctz __builtin_ctzll
#define __builtin_clz __builtin_clzll
#define __builtin_popcount __builtin_popcountll
using namespace std;
template<typename TH> void _dbg(const char* sdbg, TH h) { cerr<<sdbg<<"="<<h<<"\n"; }
template<typename TH, typename... TA> void _dbg(const char* sdbg, TH h, TA... t) {
while(*sdbg != ',') { cerr<<*sdbg++; } cerr<<"="<<h<<","; _dbg(sdbg+1, t...);
}
#ifdef LOCAL
#define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
#define debugv(x) {{cerr <<#x <<" = "; FORE(itt, (x)) cerr <<*itt <<", "; cerr <<"\n"; }}
#else
#define debug(...) (__VA_ARGS__)
#define debugv(x)
#define cerr if(0)cout
#endif
#define next ____next
#define prev ____prev
#define left ____left
#define hash ____hash
typedef long long ll;
typedef long double LD;
typedef pair<int, int> PII;
typedef pair<ll, ll> PLL;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<ll> VLL;
typedef vector<pair<int, int> > VPII;
typedef vector<pair<ll, ll> > VPLL;
template<class C> void mini(C&a4, C b4){a4=min(a4, b4); }
template<class C> void maxi(C&a4, C b4){a4=max(a4, b4); }
template<class T1, class T2>
ostream& operator<< (ostream &out, pair<T1, T2> pair) { return out << "(" << pair.first << ", " << pair.second << ")";}
template<class A, class B, class C> struct Triple { A first; B second; C third;
bool operator<(const Triple& t) const { if (st != t.st) return st < t.st; if (nd != t.nd) return nd < t.nd; return rd < t.rd; } };
template<class T> void ResizeVec(T&, vector<int>) {}
template<class T> void ResizeVec(vector<T>& vec, vector<int> sz) {
vec.resize(sz[0]); sz.erase(sz.begin()); if (sz.empty()) { return; }
for (T& v : vec) { ResizeVec(v, sz); }
}
typedef Triple<int, int, int> TIII;
template<class A, class B, class C>
ostream& operator<< (ostream &out, Triple<A, B, C> t) { return out << "(" << t.st << ", " << t.nd << ", " << t.rd << ")"; }
template<class T> ostream& operator<<(ostream& out, vector<T> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }
template<class T> ostream& operator<<(ostream& out, set<T> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }
template<class L, class R> ostream& operator<<(ostream& out, map<L, R> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }
typedef long double LD;
const LD kEps = 1e-10;
const LD kPi = 2 * acos(0);
LD Sq(LD x) {
return x * x;
}
struct Point {
LD x, y;
Point() {}
Point(LD a, LD b) : x(a), y(b) {}
Point(const Point& a) : x(a.x), y(a.y) {}
void operator=(const Point& a) { x = a.x; y = a.y; }
Point operator+(const Point& a) const { Point p(x + a.x, y + a.y); return p; }
Point operator-(const Point& a) const { Point p(x - a.x, y - a.y); return p; }
Point operator*(LD a) const { Point p(x * a, y * a); return p; }
Point operator/(LD a) const { assert(abs(a) > kEps); Point p(x / a, y / a); return p; }
Point& operator+=(const Point& a) { x += a.x; y += a.y; return *this; }
Point& operator-=(const Point& a) { x -= a.x; y -= a.y; return *this; }
Point& operator*=(LD a) { x *= a; y *= a; return *this;}
Point& operator/=(LD a) { assert(abs(a) > kEps); x /= a; y /= a; return *this; }
bool IsZero() const {
return abs(x) < kEps && abs(y) < kEps;
}
bool operator==(const Point& a) const {
return (*this - a).IsZero();
}
LD CrossProd(const Point& a) const {
return x * a.y - y * a.x;
}
LD CrossProd(Point a, Point b) const {
a -= *this;
b -= *this;
return a.CrossProd(b);
}
LD DotProd(const Point& a) const {
return x * a.x + y * a.y;
}
LD Norm() const {
return sqrt(Sq(x) + Sq(y));
}
void NormalizeSelf() {
*this /= Norm();
}
Point Normalize() {
Point res(*this);
res.NormalizeSelf();
return res;
}
LD Dist(const Point& a) const {
return (*this - a).Norm();
}
LD Angle() const {
return atan2(y, x);
}
void RotateSelf(LD angle) {
LD c = cos(angle);
LD s = sin(angle);
LD nx = x * c - y * s;
LD ny = y * c + x * s;
y = ny;
x = nx;
}
Point Rotate(LD angle) const {
Point res(*this);
res.RotateSelf(angle);
return res;
}
static bool LexCmp(const Point& a, const Point& b) {
if (abs(a.x - b.x) > kEps) {
return a.x < b.x;
}
return a.y < b.y;
}
LD SqNorm() {
return x * x + y * y;
}
friend ostream& operator<<(ostream& out, Point m);
};
ostream& operator<<(ostream& out, Point p) {
out << "(" << p.x << ", " << p.y << ")";
return out;
}
struct Circle {
Point center;
LD r;
Circle(LD x, LD y, LD rad) {
center = Point(x, y);
r = rad;
}
Circle(const Point& a, LD rad) : center(a), r(rad) {}
LD Area() const {
return kPi * Sq(r);
}
LD Perimeter() const {
return 2 * kPi * r;
}
LD Diameter() const {
return 2 * r;
}
Point RotateRightMost(LD ang) const {
return center + Point{r * cos(ang), r * sin(ang)};
}
bool operator==(const Circle& c) const {
return center == c.center && abs(r - c.r) < kEps;
}
};
struct Line {
Point p[2];
bool is_seg;
Line(Point a, Point b, bool is_seg_ = false) {
p[0] = a;
p[1] = b;
is_seg = is_seg_;
}
Line() {
}
Point& operator[](int a) {
return p[a];
}
Point NormalVector() {
Point perp = p[1] - p[0];
perp.RotateSelf(kPi / 2);
perp.NormalizeSelf();
return perp;
}
// (A, B, C) such that A^2 + B^2 = 1, (A, B) > (0, 0)
vector<LD> LineEqNormLD() { // seems ok
LD A = p[1].y - p[0].y;
LD B = p[0].x - p[1].x;
LD C = -(A * p[0].x + B * p[0].y);
assert(abs(A * p[1].x + B * p[1].y + C) < kEps);
LD norm = sqrt(Sq(A) + Sq(B));
vector<LD> res{A, B, C};
for (auto& x : res) { x /= norm; }
if (A < -kEps || (abs(A) < kEps && B < -kEps)) {
for (auto& x : res) { x *= -1; }
}
return res;
}
// assumes that coordinates are integers!
vector<int> LineEqNormInt() { // seems ok
int A = round(p[1].y - p[0].y);
int B = round(p[0].x - p[1].x);
int C = -(A * p[0].x + B * p[0].y);
int gcd = abs(__gcd(A, __gcd(B, C)));
vector<int> res{A, B, C};
for (auto& x : res) { x /= gcd; }
if (A < 0 || (A == 0 && B < 0)) {
for (auto& x : res) { x *= -1; }
}
return res;
}
};
struct Utils {
// 0, 1, 2 or 3 pts. In case of 3 pts it means they are equal
static vector<Point> InterCircleCircle(Circle a, Circle b) {
if (a.r + kEps < b.r) {
swap(a, b);
}
if (a == b) {
return vector<Point>{a.RotateRightMost(0), a.RotateRightMost(2 * kPi / 3),
a.RotateRightMost(4 * kPi / 3)};
}
Point diff = b.center - a.center;
LD dis = diff.Norm();
LD ang = diff.Angle();
LD longest = max(max(a.r, b.r), dis);
LD per = a.r + b.r + dis;
if (2 * longest > per + kEps) {
return vector<Point>();
}
if (abs(2 * longest - per) < 2 * kEps) {
return vector<Point>{a.RotateRightMost(ang)};
}
LD ang_dev = acos((Sq(a.r) + Sq(dis) - Sq(b.r)) / (2 * a.r * dis));
return vector<Point>{a.RotateRightMost(ang - ang_dev), a.RotateRightMost(ang + ang_dev)};
}
static vector<Point> InterLineLine(Line& a, Line& b) { // working fine
Point vec_a = a[1] - a[0];
Point vec_b1 = b[1] - a[0];
Point vec_b0 = b[0] - a[0];
LD tr_area = vec_b1.CrossProd(vec_b0);
LD quad_area = vec_b1.CrossProd(vec_a) + vec_a.CrossProd(vec_b0);
if (abs(quad_area) < kEps) { // parallel or coinciding
if (PtBelongToLine(b, a[0])) {
return {a[0], a[1]};
} else {
return {};
}
}
return {a[0] + vec_a * (tr_area / quad_area)};
}
static Point ProjPointToLine(Point p, Line l) { ///Tested
Point diff = l[1] - l[0];
return l[0] + diff * (diff.DotProd(p - l[0]) / diff.DotProd(diff));
}
static Point ReflectPtWRTLine(Point p, Line l) {
Point proj = ProjPointToLine(p, l);
return proj * 2 - p;
}
static vector<Point> InterCircleLine(Circle c, Line l) { /// Tested here: http://c...content-available-to-author-only...s.com/gym/100554/submission/10197624
Point proj = ProjPointToLine(c.center, l);
LD dis_proj = c.center.Dist(proj);
if (dis_proj > c.r + kEps) { return vector<Point>(); }
LD a = sqrt(max((LD)0, Sq(c.r) - Sq(dis_proj)));
Point dir = l[1] - l[0];
LD dir_norm = dir.Norm();
vector<Point> cands{proj + dir * (a / dir_norm), proj - dir * (a / dir_norm)};
if (cands[0].Dist(cands[1]) < kEps) { return vector<Point>{proj}; }
return cands;
}
static bool PtBelongToLine(Line l, Point p) {
return abs(l[0].CrossProd(l[1], p)) < kEps;
}
static bool PtBelongToSeg(Line l, Point p) { // seems ok
return abs(p.Dist(l[0]) + p.Dist(l[1]) - l[0].Dist(l[1])) < kEps;
}
static vector<Point> InterCircleSeg(Circle c, Line l) { //seems ok
vector<Point> from_line = InterCircleLine(c, l);
vector<Point> res;
for (auto p : from_line) {
if (PtBelongToSeg(l, p)) { res.PB(p); }
}
return res;
}
static vector<Point> TangencyPtsToCircle(Circle c, Point p) { // seems ok
LD d = c.center.Dist(p);
if (d < c.r - kEps) { return {}; }
if (d < c.r + kEps) { return {p}; }
LD from_cent = (p - c.center).Angle();
LD ang_dev = acos(c.r / d);
return {c.RotateRightMost(from_cent - ang_dev), c.RotateRightMost(from_cent + ang_dev)};
}
// outer and inner tangents tested only locally (however I believe that rigorously)
static vector<Line> OuterTangents(Circle c1, Circle c2) {
if (c1 == c2) { return {}; } // is it surely best choice?
if (c1.r < c2.r) { swap(c1, c2); }
if (c2.r + c1.center.Dist(c2.center) < c1.r - kEps) { return {}; }
if (abs(c1.r - c2.r) < kEps) {
Point diff = c2.center - c1.center;
Point R = diff.Rotate(kPi / 2) * (c1.r / diff.Norm());
return {{c1.center + R, c2.center + R}, {c1.center - R, c2.center - R}};
}
Point I = c1.center + (c2.center - c1.center) * (c1.r / (c1.r - c2.r));
if (c2.r + c1.center.Dist(c2.center) < c1.r + kEps) {
return {{I, I + (c2.center - c1.center).Rotate(kPi / 2)}};
}
vector<Point> to1 = TangencyPtsToCircle(c1, I);
vector<Point> to2 = TangencyPtsToCircle(c2, I);
vector<Line> res{{to1[0], to2[0]}, {to1[1], to2[1]}};
assert(Utils::PtBelongToLine(res[0], I));
assert(Utils::PtBelongToLine(res[1], I));
return res;
}
// unfortunately big part of code is same as in previous function
// can be joined when putting appropriate signs in few places
// however those ifs differ a bit hence it may not be good idea
// to necessarily join them
static vector<Line> InnerTangents(Circle c1, Circle c2) {
if (c1 == c2) { return {}; } // this time surely best choice
if (c1.r < c2.r) { swap(c1, c2); }
LD d = c1.center.Dist(c2.center);
if (d < c1.r + c2.r - kEps) { return {}; }
Point I = c1.center + (c2.center - c1.center) * (c1.r / (c1.r + c2.r));
if (d < c1.r + c2.r + kEps) {
return {{I, I + (c2.center - c1.center).Rotate(kPi / 2)}};
}
vector<Point> to1 = TangencyPtsToCircle(c1, I);
vector<Point> to2 = TangencyPtsToCircle(c2, I);
vector<Line> res{{to1[0], to2[0]}, {to1[1], to2[1]}};
assert(Utils::PtBelongToLine(res[0], I));
assert(Utils::PtBelongToLine(res[1], I));
return res;
}
static bool AreParallel(Line l1, Line l2) { // seems ok
return abs(l1[0].CrossProd(l2[0], l1[1]) - l1[0].CrossProd(l2[1], l1[1])) < kEps;
}
// returns a vector of points such that their convex hull is intersection of those segments
// SZ(res) == 0 => empty intersection, SZ(res) == 1 => intersection is a point, SZ(res) == 2 => intersection is a segment
static vector<Point> InterSegs(Line l1, Line l2) { // seems ok
if (!Point::LexCmp(l1[0], l1[1])) { swap(l1[0], l1[1]); }
if (!Point::LexCmp(l2[0], l2[1])) { swap(l2[0], l2[1]); }
if (AreParallel(l1, l2)) {
if (!PtBelongToLine(l1, l2[0])) { return vector<Point>(); }
vector<Point> ends(2);
for (int tr = 0; tr < 2; tr++) {
if (Point::LexCmp(l1[tr], l2[tr]) ^ tr) {
ends[tr] = l2[tr];
} else {
ends[tr] = l1[tr];
}
}
if ((ends[1] - ends[0]).IsZero()) {
ends.pop_back();
}
if (SZ(ends) == 2 && Point::LexCmp(ends[1], ends[0])) { return vector<Point>(); }
return ends;
} else {
vector<Point> p = InterLineLine(l1, l2);
if (PtBelongToSeg(l1, p[0]) && PtBelongToSeg(l2, p[0])) { return p; }
return vector<Point>();
}
}
static LD Angle(Point P, Point Q, Point R) { // angle PQR
LD ang2 = (P - Q).Angle();
LD ang1 = (R - Q).Angle();
LD ans = ang1 - ang2;
if (ans < kEps) {
ans += 2 * kPi;
}
return ans;
}
// tested here: http://c...content-available-to-author-only...s.com/contest/600/submission/14961583
// DON'T change anything as this will lead to precision errors
// don't know why, but this is the only version which works precisely even for very mean cases
static LD DiskInterArea(Circle c1, Circle c2) { // tested here: http://o...content-available-to-author-only...s.info/~ejudge/team.cgi?contest_id=006254 problem I
if (c1.r < c2.r) {
swap(c1, c2);
}
LD d = c1.center.Dist(c2.center);
if (c1.r + c2.r < d + kEps) {
return 0;
}
if (c1.r - c2.r > d - kEps) {
return kPi * Sq(c2.r);
}
LD alfa = acos((Sq(d) + Sq(c1.r) - Sq(c2.r)) / (2 * d * c1.r));
LD beta = acos((Sq(d) + Sq(c2.r) - Sq(c1.r)) / (2 * d * c2.r));
return alfa * Sq(c1.r) + beta * Sq(c2.r) - sin(2 * alfa) * Sq(c1.r) / 2 - sin(2 * beta) * Sq(c2.r) / 2;
}
static Line RadAxis(Circle c1, Circle c2) {
LD d = c1.center.Dist(c2.center);
LD a = (Sq(c1.r) - Sq(c2.r) + Sq(d)) / (2 * d);
Point Q = c1.center + (c2.center - c1.center) * (a / d);
Point R = Q + (c2.center - c1.center).Rotate(kPi / 2);
return Line(Q, R);
}
};
Point Rot(Point P) {
return {-P.y, P.x};
}
LD Dis(Point A, Point B) {
return A.Dist(B);
}
const int N = 1e5 + 5;
Point flag[N];
int32_t main() {
ios_base::sync_with_stdio(0);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
cin.tie(0);
//double beg_clock = 1.0 * clock() / CLOCKS_PER_SEC;
int n;
cin>>n;
int res = n;
int x, y, A, B;
cin>>x>>y>>A>>B;
Point P = {(LD)x + A / 2, (LD)y - B / 2};
RE (i, n) {
int xf, yf;
cin>>xf>>yf;
flag[i] = {(LD)xf, (LD)yf};
}
REP (tr, 4) {
Point R{(LD)P.x - A / 2, (LD)P.y + B / 2};
Point Q{(LD)P.x + A / 2, (LD)P.y};
int bil = 0;
Line hor{P, Q};
vector<pair<LD, int>> evs;
RE (i, n) {
int at_P = Dis(P, flag[i]) < Dis(P, R) + kEps;
int at_Q = Dis(Q, flag[i]) < Dis(Q, R) + kEps;
if (at_P == at_Q) {
if (at_P) {
bil++;
}
continue;
}
Point midFR = (flag[i] + R) / 2;
Point dir = flag[i] - midFR;
dir = Rot(dir);
Line sym{midFR, midFR + dir};
vector<Point> inters = Utils::InterLineLine(sym, hor);
assert(SZ(inters) == 1);
Point inter = inters[0];
if (at_P) {
evs.PB({inter.x + kEps, -1});
bil++;
} else {
evs.PB({inter.x - kEps, 1});
}
}
sort(ALL(evs));
mini(res, bil);
for (auto ev : evs) {
bil += ev.nd;
mini(res, bil);
}
P = Rot(P);
RE (i, n) {
flag[i] = Rot(flag[i]);
}
swap(A, B);
}
cout<<res<<endl;
return 0;
}