Elevator II

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 megabytes

There is a building with 10^9 floors but only 1 elevator. Initially, the elevator is on the f-th floor.

There are n people waiting for the elevator. The i-th person is currently on the l_i -th floor and wants to take the elevator to the r_i -th floor ($l_i < r_i$). Because the elevator is so small, it can carry at most 1 person at a time.

It costs 1 unit of electric energy to move the elevator 1 floor upwards. No energy is needed if the elevator moves downwards. That is to say, it costs $\max(y-x,0)$ units of electric energy to move the elevator from the x-th floor to the y-th floor.

Find the optimal order to take all people to their destinations so that the total electric energy cost is minimized.

More formally, let a_1, a_2, \dots, a_n be a permutation of n where a_i indicates that the i-th person to take the elevator is a_i . The total electric energy cost can be calculated as

$$\sum_{i=1}^{n} (\max(l_{a_i} - r_{a_{(i-1)}}, 0) + r_{a_i} - l_{a_i})$$

where $a_0 = 0, r_0 = f$ for convenience.

Recall that a sequence a_1, a_2, \dots, a_n of length n is a permutation of n if and only if each integer from 1 to n (both inclusive) appears exactly once in the sequence.

Input

There are multiple test cases. The first line of the input contains an integer T ($1 \le T \le 10^4$) indicating the number of test cases. For each test case:

The first line contains two integers n and f ($1 \le n \le 10^5$, $1 \le f \le 10^9$) indicating the number of people and the initial position of the elevator.

For the following n lines, the i-th line contains two integers l_i and r_i ($1 \le l_i < r_i \le 10^9$) indicating that the i-th person wants to go from the l_i -th floor to the r_i -th floor by elevator.

It's guaranteed that the sum of n of all test cases will not exceed 3×10^5 .

Output

For each test case, first output one line containing one integer indicating the minimum total electric energy, then output another line containing n integers a_1, a_2, \dots, a_n separated by a space indicating the optimal order to carry all people. Note that these n integers must form a permutation of n. If there are multiple optimal orders, you can print any of them.

Example

standard input	standard output
2	11
4 2	2 1 4 3
3 6	5
1 3	2 1
2 7	
5 6	
2 5	
2 4	
6 8	