Three Person Tree Game

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Alice and Bob are tired of playing 2-player games so they called their third friend Chaithanya and decide to play a 3-player game. We abbreviate their names with A, B and C respectively.
A, B and C are playing on a tree with N vertices (vertices are numbered from 1 to N). Recall that a tree is a connected graph with no cycles.
A, B and C are initially each standing on three distinct vertices. They take turns to play their move with A playing first, B playing second and C playing third.
When it's a players turn to move, they can do one of the following:

- Stay on the same vertex.
- Move to an adjacent vertex.

The game ends when one of the below conditions are met:

- C and A are in the same node. In this case A wins.
- A and B are in the same node. In this case B wins.
- B and C are in the same node. In this case C wins.

The primary objective of each player is to win the game. If that is not possible then their secondary objective is to not let anybody else win. All players play optimally.

Given the tree and the initial position of A, B and C , you have to decide if the game will continue forever or if there will be a winner. If there will be a winner then output the name of the winner, else output DRAW.

Input

The first line contains a single integer T denoting the number of test cases.
For each test case:

- The first line contains a single integer N denoting the number of people.
- The next line contains three space separated integers a, b, c denoting the vertex number of A, B and C respectively.
- The next $N-1$ lines contains two space separated integers u, v denoting that there is an edge between vertex u and v. It is guaranteed that the edges form a valid tree.
- $1 \leq T \leq 3 \cdot 10^{4}$
- $3 \leq N \leq 2 \cdot 10^{5}$
- $1 \leq u, v \leq N$
- $1 \leq a, b, c \leq N$
- $a \neq b$ and $a \neq c$ and $b \neq c(\{a, b, c\}$ are pairwise distinct $)$
- The edges form a valid tree.
- Sum of N over all test cases in a test file does not exceed $2 \cdot 10^{5}$

Output

For every test case:

- If A wins then output A .
- If B wins then output B.
- If C wins then output C.
- If there is no winner then output DRAW.

Note that the output is case sensitive.

Example

	standard input		standard output	
2		A		
3			DRAW	
1	2	3		
2	1			
3	1			
4				
1	2	3		
1	4			
2	4			
3	4			

Note

- For the first test case, A is at vertex $1, \mathrm{~B}$ is at vertex 2 and C is at vertex 3 . There is an edge between vertex 1 and 3 , so for the first move A will move to vertex 3 where C is located and win the game.
- For the second test case, again A is at vertex $1, \mathrm{~B}$ is at vertex 2 and C is at vertex 3 . In this case every person has two options for the first turn: 1) either stay at the same vertex or 2) move to vertex 4. For the second option, if anyone moves to vertex 4 then in the next turn one of the other people will move to vertex 4 and win the game. Therfore no one will move to vertex 4 and the game will never end.
- For example let's say A andB stay in the same vertex for their turns. C decides to move to vertex 4 on his turn. In the next turn it's A's move to play. A will definitely move to vertex 4 and win the game. According to the objective of every player, they don't want anyone else to win. So C will not move to vertex 4. Similar argument can be made for players A and B.

