Greek Casino

Input file:	standard input
Output file:	standard output
Time limit:	0.7 seconds
Memory limit:	1024 megabytes

Since the early civilizations, humankind has enjoyed games of chance. Even the ingenious Greeks, known for their groundbreaking concept of the least common multiple (LCM), couldn't resist a good gamble.
Inspired by this mathematical marvel, folks in Athens devised a unique betting system: after purchasing a ticket, a participant would receive a random number of coins. To determine this number, there are $N \geq 3$ ordered slots numbered from 1 to N. A token is initially placed at slot 1 , and the following steps are repeated:

- Let x be the number of the slot where the token is currently located.
- Generate a random integer y between 1 and N, and compute z, the LCM of x and y.
- If $z>N$, the procedure ends.
- Otherwise, the token is moved to slot z, and the participant receives one coin.

As it is well known, the house always wins: the casino employs a particular probability distribution for generating random integers, so as to ensure a profitable outcome.

The casino owner is constantly seeking to optimize the betting system's profitability. You, an AI designed to aid in such tasks, are given N and the probability distribution. Determine the expected total number of coins awarded to a participant.

Input

The first line contains an integer $N\left(3 \leq N \leq 10^{5}\right)$ indicating the number of slots.
The second line contains N integers $W_{1}, W_{2}, \ldots, W_{N}\left(1 \leq W_{i} \leq 1000\right.$ for $\left.i=1,2, \ldots, N\right)$, representing that the probability of generating i is $W_{i} /\left(\sum_{j} W_{j}\right)$, that is, the probability of generating i is the relative weight of W_{i} with respect to the sum of the whole list $W_{1}, W_{2}, \ldots, W_{N}$.

Output

Output a single line with the expected total number of coins awarded to a participant. The output must have an absolute or relative error of at most 10^{-9}. It can be proven that the procedure described in the statement ends within a finite number of iterations with probability 1 , and that the expected total number of coins is indeed finite.

Examples

standard input		standard output	
3		3.5000000000	
1	1	1	
3		3.6666666667	
1	1	2	

