
Fast Hash Transform
Input file: standard input
Output file: standard output
Time limit: 5 seconds
Memory limit: 512 megabytes

Define a closed function f on V =
{
0, 1 · · · , 264 − 1

}
as a single-round hash function if and only if it has

the following standard form:

f(X) = B ⊕
m⊕
j=1

((X ≪ sj) ◦j Aj) ,

where,

• Aj , B ∈ V;

• 0 ≤ m ≤ 64, 0 ≤ sj ≤ 63 and all sj are distinct;

– ⊕ denotes bitwise XOR operation, ≪ denotes circular left shift operation (the circular left
shift on V is defined as circular left shifting the unsigned binary representation padded to
64 bits), and ◦j denotes either the bitwise OR operation (denoted as ∨) or the bitwise AND
operation (denoted as ∧).

Given N single-round hash functions f1, f2, · · · , fN and Q operations, the operations are of the following
two types:

• Given l, r, x, compute the value of fr (· · · (fl+1 (fl(x))) · · · );

• Given l, modify fl to a new single-round hash function.

Considering the practical aspect that modifying single-round hash functions would invalidate a large
number of quick hash transformation results, it is guaranteed that such modifications will not exceed C
times.

Input
The first line contains three non-negative integers N,Q,C, representing the number of single-round hash
functions to be maintained, the number of operations, and the number of operations to modify a single-
round hash function, respectively. It is guaranteed that 1 ≤ N,Q ≤ 20, 000, 0 ≤ C ≤ 400, and C < Q.

From the second line to the (N + 1)-th line, the (i+ 1)-th line describes the initial parameters of fi:

• The first non-negative integer m in each line indicates the number of terms involved in the XOR
sum in the standard form of fi. It is guaranteed that 0 ≤ m ≤ 64.

• Next, input 3m non-negative integers in sequence, where the (3j − 2)-th, (3j − 1)-th, and 3j-th
integers are sj , oj , Aj , respectively, representing the number of bits X is circularly left-shifted in the
j-th term of the XOR sum, the type of bitwise operation ◦j in the j-th term (oj = 0 corresponds to
bitwise OR operation, oj = 1 corresponds to bitwise AND operation), and the constant term of the
bitwise operation in the j-th term. It is guaranteed that 0 ≤ sj ≤ 63 and the sj values are distinct
within the same single-round hash function, 0 ≤ oj ≤ 1, 0 ≤ Aj < 264.

• The last number in each line is a non-negative integer B, representing the constant term in the
outer layer of the standard form. It is guaranteed that 0 ≤ B < 264.

Page 1 of 3



From the (N + 1)-th to the (N +Q+ 1)-th line, the (N + i+ 1)-th line describes the i-th operation.

• The beginning of each line is a non-negative integer op, indicating the type of operation.

• If op = 0, it indicates an operation to compute a quick hash transformation. It is followed by three
non-negative integers l, r, x, indicating the starting position, ending position, and initial value of the
quick hash transformation, respectively. It is guaranteed that 1 ≤ l ≤ r ≤ N , 0 ≤ x < 264.

• If op = 1, it indicates an operation to modify a certain single-round hash function. First, input
an integer l, indicating the number of the single-round hash function to be modified. Then, input
several integers in sequence to describe the modified fl. The format for describing the new single-
round hash function is the same as the format for describing the initial parameters of each function.
It is guaranteed that 1 ≤ l ≤ N .

Output
For each of the operation of the first type, output a single line contains a single integer, indicating the
answer.

Example
standard input standard output

3 5 1
1 4 0 0 51966
1 60 0 0 0
1 0 0 16 15
0 1 1 771
0 2 2 32368
0 3 3 0
1 2 2 0 0 15 61 1 4095 46681
0 1 3 2023

64206
2023
31
1112

Note
For the first example:

The initial parameters for the 3 single-round hash functions are:

• f1(X) = (X ≪ 4)⊕ 51996 (where 51996 is represented in hexadecimal as ‘0xCAFE‘);

• f2(X) = X ≪ 60;

• f3(X) = (X ∨ 16)⊕ 15 (where 16 and 15 are represented in hexadecimal as ‘0x0010‘ and ‘0x000F‘
respectively).

The first operation is to compute a quick hash transformation. The result of performing a quick hash
transformation on 771 (‘0x0303‘) is f1(771) = (771 ≪ 4)⊕ 51996 = 64206 (‘0xFACE‘).

The second operation is to compute a quick hash transformation. The result of performing a quick hash
transformation on 32368 (‘0x7E70‘) is f2(32368) = 32368 ≪ 60 = 2023 (‘0x07E7‘).

The third operation is to compute a quick hash transformation. The result of performing a quick hash
transformation on 0 (‘0x0000‘) is f3(0) = (0 ∨ 16)⊕ 15 = 31 (‘0x001F‘).

The fourth operation is to modify f2. After modification, f2(X) = (X ∨ 15)⊕ ((X ≪ 61)∧ 4095)⊕ 46681
(where 4095 and 46681 are represented in hexadecimal as ‘0x0FFF‘ and ‘0xB659‘ respectively).

Page 2 of 3



The fifth operation is to compute a quick hash transformation. For the initial value 2023 (‘0x07E7‘), since
f1(2023) = 46222 (‘0xB48E‘), f2(46222) = 1095 (‘0x0447‘), and f3(1095) = 1112 (‘0x0458‘), the result of
the quick hash transformation is 1112.

Please note the impact of input and output efficiency on program running time.

In the example explanation, all hexadecimal representations are padded to 4 hexadecimal digits, but this
does not mean that the input numbers do not exceed 65535.

Page 3 of 3


