Two in One

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 megabytes

Given a color sequence c of length n.

Define occ(x, l, r) as the number of occurrences of color x in the sequence c between the l^{th} and r^{th} items.

Please find an interval [l, r] and then find two colors x, y (note x, y can be equal), so that occ(x, l, r) or occ(y, l, r) is maximized, where or is the binary OR operation.

Input

There are multiple test cases. The first line of the input contains a single integer T $(1 \le T \le 10^5)$, indicating the number of the test cases. For each of the test case:

For each test case, the first line contains a positive integer $n \ (1 \le n \le 10^5)$.

The second line contains n integers, representing the sequence $c \ (1 \le c_i \le n)$.

It is guaranteed that the sum of n over all test cases does not exceed 5×10^5 .

Output

Output a single line contains a single integer, indicating the answer.

Examples

standard input	standard output
1	3
7	
1 2 3 4 3 2 1	
1	7
9	
1 1 1 1 1 2 2 2 2	

Note

For the first test case, one possible selection is the interval [2,5] and choosing colors 2 and 3, with occurrence counts of 2 and 1 respectively, resulting in a bitwise OR result of 3. It can be proven that there is no better solution.