Shell Sort

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

Shell sort is an excellent sorting algorithm, which can be regarded as a kind of group insertion sort. Next, we will briefly introduce this algorithm:

Assume we need to sort an array $A_{0 \ldots n-1}$ of length n in ascending order. First, we need to determine an integer m and a decreasing sequence d of length m with the last number being 1 as the step sequence, and then perform m rounds of operations.
For the i-th round of operation, let $t=d_{i}$, and then consider dividing A into as evenly as possible t groups. Specifically, we choose to group those positions that have the same modulo t, and then perform insertion sort within each group.

```
void insert_sort (vector \(<\) int \(>\& v)\) \{
    int \(\mathrm{n}=\mathrm{v} . \operatorname{size}()\);
    for (int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) ) \(\{\)
        for \((\) int \(j=i ; j \& \&[j]<v[j-1] ; j--)\{\)
                        \(\operatorname{swap}(\mathrm{v}[\mathrm{j}], \quad \mathrm{v}[\mathrm{j}-1])\);
                        swap_count++;
        \}
    \}
\}
void work () \{
    for (int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{t} ; \mathrm{i}++\) ) \(\{\)
            vector \(<\) int \(>v\);
            for (int \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+=\mathrm{t}) \mathrm{v} \cdot \operatorname{push} \_\operatorname{back}(\mathrm{A}[\mathrm{j}])\);
            insert_sort(v);
            for \((\operatorname{int} \mathrm{j}=\mathrm{i}, \mathrm{k}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}+=\mathrm{t}, \mathrm{k}++) \mathrm{A}[\mathrm{j}]=\mathrm{v}[\mathrm{k}]\);
    \}
\}
void shell_sort() \{
    swap_count \(=0\);
    for (int \(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{m} ; \mathrm{i}++)\{\)
        \(\mathrm{t}=\mathrm{d}[\mathrm{i}]\);
        work ();
    \}
\}
```

The work function represents one round of operation with parameter $t=d[i]$.
Given two integers n, m, and a step sequence d of length m, you need to calculate the maximum number of array element swaps, that is, the maximum value of the variable swap_count, after running the shell_sort function for all permutations of lengths n. Also, you need to give the number of permutations that can achieve this maximum value.
The answers need to be modulo $10^{9}+7$.

Input

The first line of the input contains two integers n and $m(2 \leq n \leq 30,1 \leq m \leq 10)$.
The second line of the input contains m integers, where the i-th integer represents d_{i}. It is guaranteed
that $1 \leq d_{i} \leq 10, d_{m}=1$, and $d_{i}>d_{i+1}$ for all $1 \leq i \leq m-1$.

Output

Output a single line contains two integers, representing the maximum number of swaps and the number of permutations that achieve this maximum number of swaps, respectively. The answers need to be modulo $10^{9}+7$.

Example

	standard input	standard output	
5	2	72	
2	1		

