Mirrors

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Given an integer sequence of length $n, h_{1}, h_{2}, \ldots, h_{n}$, find the number of pairs (u, v) that satisfy all of the following conditions:

- $1 \leq u<v \leq n$, and u, v are integers;
- There exists a positive real number L and a sequence of length $(v-u+1), r_{u}, r_{u+1}, \cdots, r_{v}$, satisfying all of the following conditions:
- For all $u \leq i \leq v$, let $h_{i}^{\prime}=2 L-h_{i}$, then $r_{i} \in\left\{h_{i}, h_{i}^{\prime}\right\}$;
* Specifically, when $h_{i}=h_{i}^{\prime}$, then $r_{i}=h_{i}$;
- For all $u \leq i<v, r_{i}<r_{i+1}$.

Input

The first line of the input contains a positive integer $n\left(2 \leq n \leq 5 \times 10^{5}\right)$, representing the number of pillars.

The second line contains n positive integers $h_{1}, h_{2}, \ldots, h_{n}\left(1 \leq h_{i} \leq 10^{12}\right)$, representing the heights of the pillars.

Output

Output a single line contains a single integer, representing the number of pairs (u, v).

Example

		standard input	standard output
4	3	2	4

