Tree and Permutation

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Given an integer n, an undirected tree with n nodes, and two distinct nodes s, t on the tree where each edge has a length of 1 . Nodes are numbered with integers from 1 to n. Let $\operatorname{dist}(u, v)$ denote the distance between nodes u and v (i.e., the number of edges on the simple path between them). You are required to find a permutation $p_{1}, p_{2}, \cdots, p_{n}$ of numbers from 1 to n that satisfies the following two conditions:

- $p_{1}=s, p_{n}=t$;
- For $d_{i}=\operatorname{dist}\left(p_{i}, p_{i+1}\right)$ where $1 \leq i \leq n-1$, the permutation should minimize $\oplus_{i=1}^{n-1} d_{i}$, where \oplus denotes the bitwise XOR operation.

If there are multiple permutations that satisfy the conditions, output any one of them.

Input

This problem has multiple test cases. The first line inputs a positive integer $T(T \geq 1)$ indicating the number of test cases.
For each test case, the first line inputs three positive integers $n, s, t\left(2 \leq n \leq 5 \times 10^{4}, 1 \leq s, t \leq n, s \neq t\right)$. The following $n-1$ lines each contain two positive integers $u, v(1 \leq u, v \leq n, u \neq v)$, indicating that there is a direct undirected road connection (i.e., an edge on the tree) between locations u and v.
It is guaranteed that the sum of n over all test cases does not exceed 5×10^{5}

Output

For each test case, output a line with n positive integers $p_{1}, p_{2}, \cdots, p_{n}$, ensuring it is a permutation of 1 to n with $p_{1}=s, p_{n}=t$, and $\oplus_{i=1}^{n-1} d_{i}$ is minimized.

Examples

standard input	standard output
$\begin{array}{lll} \hline 3 & & \\ 3 & 1 & 3 \\ 1 & 2 & \\ 2 & 3 & \\ 4 & 3 & 4 \\ 1 & 2 & \\ 2 & 3 & \\ 2 & 4 & \\ 5 & 1 & 2 \\ 1 & 2 & \\ 1 & 3 & \\ 2 & 4 & \\ 3 & 5 & \end{array}$	$\begin{array}{lllll} \hline 1 & 2 & 3 & & \\ 3 & 2 & 1 & 4 & \\ 1 & 5 & 3 & 4 & 2 \end{array}$
$\begin{array}{llll} \hline 3 & & \\ 10 & 2 & 3 \\ 7 & 5 & \\ 6 & 1 & \\ 9 & 1 & \\ 4 & 5 & \\ 3 & 10 & \\ 5 & 1 & \\ 10 & 9 & \\ 1 & 2 & \\ 8 & 3 & \\ 10 & 3 & 7 \\ 5 & 6 & \\ 4 & 8 & \\ 9 & 1 & \\ 6 & 3 & \\ 7 & 3 & \\ 2 & 5 & \\ 10 & 1 & \\ 8 & 9 & \\ 1 & 6 & \\ 10 & 10 & 4 \\ 5 & 10 & \\ 1 & 4 & \\ 4 & 5 & \\ 6 & 1 & \\ 9 & 6 & \\ 2 & 10 & \\ 8 & 1 & \\ 3 & 6 & \\ 7 & 4 & \\ \hline \end{array}$	$\begin{array}{lllllllllll} \hline 2 & 6 & 5 & 4 & 7 & 1 & 9 & 8 & 10 & 3 \\ 3 & 5 & 2 & 1 & 4 & 8 & 9 & 10 & 6 & 7 \\ 10 & 2 & 5 & 7 & 1 & 8 & 6 & 3 & 9 & 4 \end{array}$

