V-Diagram

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 1024 mebibytes
A 1-indexed integer sequence a of length n is a V-diagram if $n \geq 3$ and there exists an index $i(1<i<n)$ satisfying the following:

- $a_{j}>a_{j+1}$ for $1 \leq j<i$;
- $a_{j}>a_{j-1}$ for $i<j \leq n$.

Given a V-diagram a, find a V-diagram b with the maximum possible average such that b is a consecutive subsequence of a.

A consecutive subsequence of a sequence can be obtained by removing some (possibly zero) elements from the beginning and end of the sequence.

Input

Each test contains multiple test cases. The first line contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ denoting the number of test cases. For each test case:
The first line contains one integer $n\left(3 \leq n \leq 3 \cdot 10^{5}\right)$ denoting the length of the integer sequence a.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$ denoting the sequence a itself.
It is guaranteed that a is a V-diagram, and the sum of n over all test cases does not exceed $3 \cdot 10^{5}$.

Output

For each test case, output a real number denoting the maximum possible average.
Your answer is considered correct if its absolute or relative error does not exceed 10^{-9}.
Formally, let your answer be x, and the jury's answer be y. Your answer will be considered correct if and only if $\frac{|x-y|}{\max (1,|y|)} \leq 10^{-9}$.

Example

\quad standard input					standard output
2					6.75000000000000000000
4					
8	2	7	10		5.83333333333333303727
6					
9	6	5	3	4	8

