Master of Both V

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

Prof. Chen is the master of data structures and computational geometry. Recently, he taught Putata and Budada the definition of a convex polygon. A convex polygon is a simple polygon (that is, no two vertices coincide and no two edges intersect unless two consecutive edges intersect at a vertex) with all interior angles strictly less than π.
Putata and Budada solved the convex checker problem. But Prof. Chen asked them to go further. Now, they have to maintain a multiset of segments S, initially empty, and support the following two types of queries:

- "+ px py qx qy": insert a segment with endpoints $(p x, p y)$ and $(q x, q y)$ into the multiset S.
- "- i ", erase the segment inserted in the i-th query. It is guaranteed that the i-th query is an insertion query, and the corresponding segment is currently in the multiset.

After each query, Putata and Budada need to answer if there exists a convex polygon \mathcal{C} with the following property. Let the vertices of the convex polygon be $p_{0}, p_{1}, p_{2}, \ldots, p_{m-1}$ in counter-clockwise order. For every segment $u \in S$, there exists an integer $j \in\{0,1,2, \ldots, m-1\}$ such that $u \subseteq p_{j} p_{(j+1) \bmod m}$. For two segments e and f, we say $e \subseteq f$ if and only if, for every point $z \in e$, this point $z \in f$.
Please help Putata and Budada to solve this problem.

Input

Each test contains multiple test cases. The first line contains a single integer $t\left(1 \leq t \leq 5 \cdot 10^{5}\right)$ denoting the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 5 \cdot 10^{5}\right)$ denoting the number of queries.
Each of the following n lines contains one query. The query begins with a character op $(o p \in\{+,-\})$.
If $o p=+$, then four integers $p x, p y, q x$, and $q y\left(-10^{9} \leq p x, p y, q x, q y \leq 10^{9}\right)$ follow, denoting an inserting query. It is guaranteed that $p x \neq q x$ or $p y \neq q y$.
Otherwise, an integer $i(1 \leq i \leq n)$ follows, denoting an erasing query. It is guaranteed that the i-th query is an inserting query, and the corresponding segment is currently in the multiset.
It is guaranteed that the sum of n over all test cases does not exceed $5 \cdot 10^{5}$.

Output

For each test case, print a line consisting of 0 s and 1 s . The i-th character must be 1 if the answer is true after the i-th query, otherwise it must be 0 .

Example

standard input	standard output
4	11000001
8	11011
$+0010$	1101
+ 5513	1111
+ 2021	
+ 9762	
+ 1222	
- 4	
+ 0102	
- 2	
5	
$+0011$	
+ 0112	
+ 0213	
- 2	
+ 111010	
4	
$+0011$	
$+0010$	
$+0001$	
- 1	
4	
$+0011$	
+ 0011	
- 1	
- 2	

