Enumerating Substrings

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

There's an alphabet of size k. For a string S in this alphabet (the text), and string P (the pattern), let $F(S, P)=$ the maximum number of non-overlapping substrings you can take in S, that are equal to P.
Let's call a string Q beautiful, if each letter in it occurs no more than 2 times.
Over all possible strings of size n, and all possible beautiful patterns P of size m, calculate the sum of $F(S, P)$. Because this sum can be huge, output the result modulo $10^{9}+7$.

Input

The first and only line of the input contains 3 integers, $n, m, k\left(1 \leq n \leq 10^{6}, 1 \leq m \leq 2000, m \leq n\right.$ and $1 \leq k \leq 10^{9}$) - respectively, the length of string S, the length of the pattern P and the alphabet size.

Output

Print a single line, containing one integer - the sum of $F(S, P)$ over all strings S and beautiful strings P modulo $10^{9}+7$.

Examples

standard input	standard output
423	228
999999199912345678	52352722

