Set Construction

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given an integer $N \ge 2$ and an integer M such that $2 \le M \le \frac{N(N+1)}{2}$. Construct a set A of non-negative integers satisfying the following conditions:

- If $x \in A$, then $0 \le x \le 2^N 1$.
- $0 \in A$.
- $2^N 1 \in A$.
- If $x, y \in A$, then $(x \text{ AND } y) \in A$.
- If $x, y \in A$, then $(x \text{ OR } y) \in A$.
- The number of elements in A is equal to M.

Here, AND denotes the bitwise AND operation, and OR denotes the bitwise OR operation.

Given ${\cal T}$ test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

T $case_1$ $case_2$ \vdots $case_T$

Each case_i $(1 \le i \le T)$ is given in the following format:

N M

- All values in the input are integers.
- $1 \le T \le 30$
- $2 \le N \le 60$
- $2 \le M \le \frac{N(N+1)}{2}$

Output

For each test case, output M distinct non-negative integers forming a set A that satisfies all the conditions given in the problem statement. You can output the elements in any order.

Note that it can be proven that a valid answer always exists under these constraints.

Example

standard input	standard output
3	0 1 3 5 7
3 5	0 1 3 7 8 9 11 15
4 8	0 1152921504606846975
60 2	

Note

For the first test case, choosing $A = \{0, 1, 3, 5, 7\}$ satisfies all the conditions in the problem statement. For example, $(3 \text{ AND } 5) = 1 \in A$, and $(3 \text{ OR } 5) = 7 \in A$.

Any A that satisfies the conditions is acceptable; for instance, the output '7 1 4 0 5' is also valid. The elements in the output do not need to be in ascending order.

The output '1 2 3 5 7' is not valid because $0 \notin A$.

The output '0 3 4 5 7' is not valid because $3, 5 \in A$, but $(3 \text{ AND } 5) = 1 \notin A$.

The output '7 $\,7\,$ 7 $\,0\,$ 0' is not valid. Note that the set should not be a multiset.