Set Construction

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given an integer $N \geq 2$ and an integer M such that $2 \leq M \leq \frac{N(N+1)}{2}$. Construct a set A of non-negative integers satisfying the following conditions:

- If $x \in A$, then $0 \leq x \leq 2^{N}-1$.
- $0 \in A$.
- $2^{N}-1 \in A$.
- If $x, y \in A$, then $(x \operatorname{AND} y) \in A$.
- If $x, y \in A$, then $(x$ OR $y) \in A$.
- The number of elements in A is equal to M.

Here, AND denotes the bitwise AND operation, and OR denotes the bitwise OR operation.
Given T test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

```
T
case
case2
:
case}\mp@subsup{T}{T}{
```

Each case ${ }_{i}(1 \leq i \leq T)$ is given in the following format:
N M

- All values in the input are integers.
- $1 \leq T \leq 30$
- $2 \leq N \leq 60$
- $2 \leq M \leq \frac{N(N+1)}{2}$

Output

For each test case, output M distinct non-negative integers forming a set A that satisfies all the conditions given in the problem statement. You can output the elements in any order.

Note that it can be proven that a valid answer always exists under these constraints.

Example

standard input	standard output
3	01357
35	0137891115
48	01152921504606846975
602	

Note

For the first test case, choosing $A=\{0,1,3,5,7\}$ satisfies all the conditions in the problem statement. For example, $(3$ AND 5$)=1 \in A$, and $(3$ OR 5$)=7 \in A$.
Any A that satisfies the conditions is acceptable; for instance, the output '71405' is also valid. The elements in the output do not need to be in ascending order.

The output '1 $2 \begin{array}{lllll} & 3 & 5 & 7\end{array}$ ' is not valid because $0 \notin A$.
The output ' 03457 ' is not valid because $3,5 \in A$, but (3 AND 5) $=1 \notin A$.
The output '7 7700 ' is not valid. Note that the set should not be a multiset.

