R-Connected Components

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

For a positive integer R, define the number of connected components in the following infinite undirected graph as $f(R)$.

- The set of vertices is \mathbb{Z}^{2}. In other words, for any pair of integers x, y, there exists a vertex (x, y).
- There exists an edge between vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ if and only if $\left|x_{1}-x_{2}\right|^{2}+\left|y_{1}-y_{2}\right|^{2}=R$.

Given a positive integer R, output $f(R)$. If $f(R)$ is infinite, output inf.
Given T test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

```
T
case
case2
\vdots
\mp@subsup{case}{T}{}
```

Each case $_{i}(1 \leq i \leq T)$ is given in the following format:

R

- All values in the input are integers.
- $1 \leq T \leq 100$
- $1 \leq R \leq 10^{9}$

Output

For each test case, output $f(R)$ if it is finite, otherwise output inf.

Example

	standard input	
3	1	standard output
1	2	
2	inf	

Note

In the first test case, $R=1$. The edges are formed as shown below, resulting in a single connected component.

In the second test case, $R=2$. The edges are formed as shown below, resulting in two connected components.

In the third test case, $R=3$. There are no edges in this graph, and the number of connected components is infinite.

