R-Connected Components

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

For a positive integer R, define the number of connected components in the following infinite undirected graph as f(R).

- The set of vertices is \mathbb{Z}^2 . In other words, for any pair of integers x, y, there exists a vertex (x, y).
- There exists an edge between vertices (x_1, y_1) and (x_2, y_2) if and only if $|x_1 x_2|^2 + |y_1 y_2|^2 = R$.

Given a positive integer R, output f(R). If f(R) is infinite, output inf.

Given T test cases, solve each of them.

Input

The input is given from Standard Input in the following format:

Tcase₁
case₂ \vdots case_T

Each case_i $(1 \le i \le T)$ is given in the following format:

R

- All values in the input are integers.
- $1 \le T \le 100$
- $1 \le R \le 10^9$

Output

For each test case, output f(R) if it is finite, otherwise output inf.

Example

standard input	standard output
3	1
1	2
2	inf
3	

Note

In the first test case, R = 1. The edges are formed as shown below, resulting in a single connected component.

In the second test case, R = 2. The edges are formed as shown below, resulting in two connected components.

In the third test case, R = 3. There are no edges in this graph, and the number of connected components is infinite.