DFS Order 4

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Little Cyan Fish, also known as Qingyu Xiao, loves the concept of DFS order. Today, he has a rooted tree T with n vertices labeled from 1 to n. The root of the tree is vertex 1 , and the parent of vertex i $(2 \leq i \leq n)$ is vertex $f_{i}\left(1 \leq f_{i}<i\right)$.

A DFS order $D=\left(D_{1}, D_{2}, \cdots, D_{n}\right)$ represents the sequence of nodes visited during a depth-first search of the tree. A vertex appearing at the j-th position in this order (where $1 \leq j \leq n$) indicates that it is visited after $j-1$ other vertices. During the depth-first search, if a vertex has multiple children, they are visited in ascending order of their indices. Thus, in this problem, each rooted tree has a unique DFS order.

A tree with 7 vertices. The DFS Order of the tree is $[1,2,3,7,4,5,6]$.

The following pseudocode describes a way to generate the DFS order given a rooted tree T.T is uniquely represented by the array $f=\left\{f_{2}, \ldots, f_{n}\right\}$. The function GENERATE() returns the DFS order starting at the root vertex 1 :

```
Algorithm 1 An implementation of the depth-first search algorithm
    procedure DFS(vertex \(x\) )
        Append \(x\) to the end of dfs_order
        for each child \(y\) of \(x\) do \(\quad \triangleright\) Children are iterated in ascending order of index.
            DFS( \(y\) )
        end for
    end procedure
    procedure GENERATE()
        Let dfs_order be a global variable
        dfs_order \(\leftarrow\) empty list
        DFS(1)
        return dfs_order
    end procedure
```

Let D be the array returned by Generate (). There are $(n-1)$! different possible configurations for the array f, each representing a distinct tree T. Little Cyan Fish wonders: for all these $(n-1)$! configurations of f, how many distinct DFS orders D can be generated? We consider two DFS orders D and D^{\prime} to be different if and only if there exists an index $1 \leq i \leq n$ such that $D_{i} \neq D_{i}^{\prime}$. Given that the number can be very large, your task is to compute this number modulo a given prime integer P.

Input

The first line of the input contains two integers n and $P\left(1 \leq n \leq 800,10^{8} \leq P \leq 1.01 \times 10^{9}\right)$.
It is guaranteed that P is a prime number.

Output

Output a single line containing a single integer, indicating the answer.

Examples

standard input	standard output
4114514199	2
10998244353	11033
1001000000007	270904395

Note

In the first example, there are two distinct DFS orders: $D_{1}=[1,2,3,4]$ and $D_{2}=[1,2,4,3]$, which can be obtained by $T_{1}: f_{2}=1, f_{3}=1, f_{4}=1$ and $T_{2}: f_{2}=1, f_{3}=1, f_{4}=2$, respectively.

T_{2}

