Growing Sequences

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

In scientific research, exponentially growing sequences appear quite often. Some researches are especially interested in integer arrays of length n where each element is at least twice as large as the previous one: formally, $2 \cdot a_{i} \leq a_{i+1}$ for $1 \leq i \leq n-1$. They want to calculate the number of different bounded arrays satisfying this condition.

Help them! Count the number of such arrays consisting of integers from 1 to c. Since this number can be very large, you should output it modulo 998244353.

Input

The only line contains two integers n and $c\left(1 \leq n \leq 60 ; 1 \leq c \leq 10^{18}\right)$: the length of the arrays and the maximum value of their elements.

Output

Output the number of different arrays modulo 998244353.

Examples

standard input	standard output
15	5
36	4
15179	0
351234567887654321	576695683

Note

In the first example, there are 5 different arrays: [1], [2], [3], [4], [5].
In the second example, there are 4 different arrays: $[1,2,4],[1,2,5],[1,2,6],[1,3,6]$.
In the third example, there are no arrays satisfying the conditions.

