High Towers

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You are given n towers in a row. The height of the i-th tower is h_{i}.
Towers can communicate with each other if one of them is higher than all the towers between them. More formally, towers i and $j(i<j)$ can communicate with each other if and only if $\max \left(h_{i}, h_{j}\right)>\max _{k \in[i+1, j-1]} h_{k}$. Note that adjacent towers always can communicate with each other.
For each tower, we know the value a_{i} - with how many other towers can i-th tower communicate. Find any possible sequence of heights $h_{i}, 1 \leq i \leq n$.
It's guaranteed that in all provided tests there exists at least one possible sequence of heights. If there are multiple possible answers output any of them.

Input

The first line contains a single integer $n\left(2 \leq n \leq 5 \cdot 10^{5}\right)$ - the number of towers.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq n-1\right)$ - the number of towers that can communicate with i-th tower.

Output

In a single line output n integers $h_{i}\left(1 \leq h_{i} \leq 10^{9}\right)$.
It's guaranteed that in all provided tests at least one possible sequence of h_{i} exists. If there are multiple possible answers output any of them.

Examples

standard input	standard output
$\begin{array}{llllll} \hline 6 & & & & \\ 3 & 3 & 4 & 2 & 5 & 1 \end{array}$	7571104
$\begin{array}{llll} 4 & & & \\ 3 & 3 & 3 & 3 \end{array}$	3214

Note

In the first sample, for $h=[7,5,7,1,10,4]$:

- Tower 1 can communicate with towers $2,3,5$
- Tower 2 can communicate with towers $1,3,5$
- Tower 3 can communicate with towers $1,2,4,5$
- Tower 4 can communicate with towers 3,5
- Tower 5 can communicate with towers $1,2,3,4,6$
- Tower 6 can communicate with tower 5

