Graph Race

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

You are given an unweighted undirected connected graph with n vertices and m edges. Each vertex u has two integers, a_u and b_u assigned to it. For each vertex v such that there exists an edge between 1 and v find:

 $\max_{u \neq v} \{a_u - b_u \cdot \operatorname{dist}(u, v)\}$

where dist(u, v) denotes the distance between u and v.

Input

The first line of the standard input contains two integers n and m ($2 \le n \le 3 \cdot 10^5$, $1 \le m \le 3 \cdot 10^5$), respectively denoting the number of vertices of a graph and the number of its edges.

The following n lines contain two integers each a_u and b_u $(0 \le a_u, b_u \le 10^9)$.

The following m lines contain two integers each u and v $(1 \le u \ne v \le n)$, representing the edges of the graph. It is guaranteed that the graph doesn't contain multiple edges.

Output

In ascending order with respect to v such that there is an edge between 1 and v, print the value $\max_{u \neq v} \{a_u - b_u \cdot \operatorname{dist}(u, v)\}.$

standard input	standard output
54	3
0 0	3
1 1	60
1 1	
5 1	
100 40	
4 1	
1 2	
1 3	
4 5	

Example