Graph Race

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 256 megabytes
You are given an unweighted undirected connected graph with n vertices and m edges. Each vertex u has two integers, a_{u} and b_{u} assigned to it. For each vertex v such that there exists an edge between 1 and v find:

$$
\max _{u \neq v}\left\{a_{u}-b_{u} \cdot \operatorname{dist}(u, v)\right\}
$$

where $\operatorname{dist}(u, v)$ denotes the distance between u and v.

Input

The first line of the standard input contains two integers n and $m\left(2 \leq n \leq 3 \cdot 10^{5}, 1 \leq m \leq 3 \cdot 10^{5}\right)$, respectively denoting the number of vertices of a graph and the number of its edges.
The following n lines contain two integers each a_{u} and $b_{u}\left(0 \leq a_{u}, b_{u} \leq 10^{9}\right)$.
The following m lines contain two integers each u and $v(1 \leq u \neq v \leq n)$, representing the edges of the graph. It is guaranteed that the graph doesn't contain multiple edges.

Output

In ascending order with respect to v such that there is an edge between 1 and v, print the value $\max _{u \neq v}\left\{a_{u}-b_{u} \cdot \operatorname{dist}(u, v)\right\}$.

Example

	standard input		standard output
5	4	3	
0	0	3	
1	1	60	
1	1		
5	1		
100	40		
4	1		
1	2		
1	3	5	
4			

