Basic Substring Structure

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

After writing the paper Faster Algorithms for Internal Dictionary Queries, Little Cyan Fish and Kiwihadron decided to write this problem.

Let $\operatorname{lcp}(s, t)$ be the length of the longest common prefix of two strings $s=s_{1} s_{2} \ldots s_{n}$ and $t=t_{1} t_{2} \ldots t_{m}$, which is defined as the maximum integer k such that $0 \leq k \leq \min (n, m)$ and $s_{1} s_{2} \ldots s_{k}$ equals $t_{1} t_{2} \ldots t_{k}$. Little Cyan Fish gives you a non-empty string $s=s_{1} s_{2} \ldots s_{n}$. Let $f(s)=\sum_{i=1}^{n} \operatorname{lcp}(s, \operatorname{suf}(s, i))$, where $\operatorname{suf}(s, i)$ is the suffix of s starting from s_{i} (i.e. $\left.\operatorname{suf}(s, i)=s_{i} s_{i+1} \ldots s_{n}\right)$. Note that in this problem, the alphabet contains n letters, not just 26 .

For each $i=1,2, \cdots, n$, you are asked to answer the following query: if you MUST change s_{i} to another different character $c\left(c \neq s_{i}\right)$, choose the best character c and calculate the maximum value of $f\left(s^{(i)}\right)$, where $s^{(i)}=s_{1} \ldots s_{i-1} c s_{i+1} \ldots s_{n}$.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer $n\left(2 \leq n \leq 2 \times 10^{5}\right)$ indicating the length of the string.
The second line contains n integers $s_{1}, s_{2}, \ldots, s_{n}\left(1 \leq s_{i} \leq n\right)$ where s_{i} indicates that the i-th character of the string is the s_{i}-th letter in the alphabet.

It's guaranteed that the sum of n over all test cases doesn't exceed 2×10^{5}.

Output

Let $m(i)$ be the maximum value of $f\left(s^{(i)}\right)$. To decrease the size of output, for each test case output one line containing one integer which is $\sum_{i=1}^{n}(m(i) \oplus i)$, where \oplus is the bitwise exclusive or operator.

Example

standard input	standard output
2	15
4	217
2112	
12	
$\begin{array}{llllllllllll}1 & 1 & 4 & 5 & 1 & 4 & 1 & 9 & 1 & 9 & 8 & 10\end{array}$	

Note

For the first sample test case, let's first calculate the value of $m(1)$.

- If you change s_{1} to 1 , then $f\left(s^{(1)}\right)=4+2+1+0=7$.
- If you change s_{1} to 3 or 4 , then $f\left(s^{(1)}\right)=4+0+0+0=4$.

So $m(1)=7$.
Similarly, $m(2)=6, m(3)=6$ and $m(4)=4$. So the answer is $(7 \oplus 1)+(6 \oplus 2)+(6 \oplus 3)+(4 \oplus 4)=15$.

