Basic Substring Structure

Input file:	${\tt standard}$	input
Output file:	${\tt standard}$	output
Time limit:	1 second	
Memory limit:	1024 mega	bytes

After writing the paper *Faster Algorithms for Internal Dictionary Queries*, Little Cyan Fish and Kiwihadron decided to write this problem.

Let lcp(s,t) be the length of the longest common prefix of two strings $s = s_1 s_2 \dots s_n$ and $t = t_1 t_2 \dots t_m$, which is defined as the maximum integer k such that $0 \le k \le \min(n,m)$ and $s_1 s_2 \dots s_k$ equals $t_1 t_2 \dots t_k$.

Little Cyan Fish gives you a non-empty string $s = s_1 s_2 \dots s_n$. Let $f(s) = \sum_{i=1}^n \operatorname{lcp}(s, \operatorname{suf}(s, i))$, where $\operatorname{suf}(s, i)$ is the suffix of s starting from s_i (i.e. $\operatorname{suf}(s, i) = s_i s_{i+1} \dots s_n$). Note that in this problem, the alphabet contains n letters, not just 26.

For each $i = 1, 2, \dots, n$, you are asked to answer the following query: if you MUST change s_i to another different character c ($c \neq s_i$), choose the best character c and calculate the maximum value of $f(s^{(i)})$, where $s^{(i)} = s_1 \dots s_{i-1} c s_{i+1} \dots s_n$.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer $n~(2 \le n \le 2 \times 10^5)$ indicating the length of the string.

The second line contains n integers s_1, s_2, \ldots, s_n $(1 \le s_i \le n)$ where s_i indicates that the *i*-th character of the string is the s_i -th letter in the alphabet.

It's guaranteed that the sum of n over all test cases doesn't exceed 2×10^5 .

Output

Let m(i) be the maximum value of $f(s^{(i)})$. To decrease the size of output, for each test case output one line containing one integer which is $\sum_{i=1}^{n} (m(i) \oplus i)$, where \oplus is the bitwise exclusive or operator.

Example

standard input	standard output
2	15
4	217
2 1 1 2	
12	
1 1 4 5 1 4 1 9 1 9 8 10	

Note

For the first sample test case, let's first calculate the value of m(1).

- If you change s_1 to 1, then $f(s^{(1)}) = 4 + 2 + 1 + 0 = 7$.
- If you change s_1 to 3 or 4, then $f(s^{(1)}) = 4 + 0 + 0 + 0 = 4$.

So m(1) = 7.

Similarly, m(2) = 6, m(3) = 6 and m(4) = 4. So the answer is $(7 \oplus 1) + (6 \oplus 2) + (6 \oplus 3) + (4 \oplus 4) = 15$.