Computational Complexity

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Mr. Ham learned about computational complexity in the algorithm course. Let $T(n)$ be the time the algorithm takes to run on input size n. For example, for the merge sort algorithm, we have the following recursion equation,

$$
T(n)=2 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+O(n) .
$$

And we can get the upper bound $T(n)=O(n \log n)$ from the algorithm textbook.
Mr. Ham is a good kid who loves to learn and explore, so he decided to try a harder problem. Consider two algorithms $A_{1}(n)$ and $A_{2}(n)$ that call each other. They satisfy the following calling relationship:

$$
\begin{aligned}
& A_{1}(n) \text { calls } A_{2}\left(\left\lfloor\frac{n}{2}\right\rfloor\right), A_{2}\left(\left\lfloor\frac{n}{3}\right\rfloor\right), A_{2}\left(\left\lfloor\frac{n}{5}\right\rfloor\right) \text { and } A_{2}\left(\left\lfloor\frac{n}{7}\right\rfloor\right), \\
& A_{2}(n) \text { calls } A_{1}\left(\left\lfloor\frac{n}{2}\right\rfloor\right), A_{1}\left(\left\lfloor\frac{n}{3}\right\rfloor\right), A_{1}\left(\left\lfloor\frac{n}{4}\right\rfloor\right) \text { and } A_{1}\left(\left\lfloor\frac{n}{5}\right\rfloor\right),
\end{aligned}
$$

Mr. Ham wants to know the precise time taken by both algorithms.
The problem can be formally stated as follows:
Let $f(n)$ be the number of operations required by $A_{1}(n)$, and $g(n)$ be the number of operations required by $A_{2}(n)$. They satisfy the following recursion relationship

$$
\begin{aligned}
& f(n)=\max \left(n, g\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+g\left(\left\lfloor\frac{n}{3}\right\rfloor\right)+g\left(\left\lfloor\frac{n}{5}\right\rfloor\right)+g\left(\left\lfloor\frac{n}{7}\right\rfloor\right)\right), \\
& g(n)=\max \left(n, f\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+f\left(\left\lfloor\frac{n}{3}\right\rfloor\right)+f\left(\left\lfloor\frac{n}{4}\right\rfloor\right)+f\left(\left\lfloor\frac{n}{5}\right\rfloor\right)\right) .
\end{aligned}
$$

Given the values of $f(0), g(0)$ and m, Mr. Ham wants to know what $f(m)$ and $g(m)$ are, and the result is modulo M.

Note that $\lfloor x\rfloor$ represents the largest integer not exceeding x, such as $\lfloor 0.5\rfloor=0,\lfloor 11.3\rfloor=11,\lfloor 101.9\rfloor=101$, $\lfloor 99\rfloor=99,\lfloor 0\rfloor=0,\lfloor 2\rfloor=2$.

Input

The first line contains four numbers, namely $f(0), g(0), T, M\left(0 \leq f(0), g(0), T \leq 10^{5}, 2 \leq M \leq 10^{15}\right)$,
Each of the next T lines contains a integer $m\left(0 \leq m \leq 10^{15}\right)$ querying the values of $f(m)$ modulo M and $g(m)$ modulo M.

Output

Output T lines, each line contains two numbers $f(m)$ modulo M and $g(m)$ modulo M, separated by spaces.

Examples

standard input	standard output
195892010100000000000	1958920
0	36807832
1	105929554
2	1750411276
3	5029464826
10	784112893714
100	18945501905470
200	1205786612979424
1000	7148149475648626708512
19580920	281278649087251681354
20232023	
0010100000000000	00
0	11
1	22
2	33
3	44
4	1112
10	2526
20	4141
30	5558
40	162172
100	

