Energy Distribution

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

There are *n* planets in the galaxy. Some undirected tunnels connect planets. There exists at most one tunnel connecting each pair of planets. So these tunnels can be described as an $n \times n$ matrix $W_{n \times n}$. Specifically, the tunnel connecting planet *i* and *j* has a width of $w_{i,j}$ (If there is no tunnel between planet *i* and *j*, then $w_{i,j} = 0$).

Now, you want to distribute exactly 1.0 unit of energy among the *n* planets. Suppose that planet *i* is distributed e_i (a real number) unit of energy $(e_i \ge 0, \sum_{i=1}^n e_i = 1)$, these planets will bring *E* magical value, where $E = \sum_{i=1}^n \sum_{j=i+1}^n e_i e_j w_{i,j}$.

Please distribute the energy and maximize the magical value.

Input

The first line contains an interger $n(1 \le n \le 10)$.

For the next n lines, each line contains n intergers. The j-th integer in the i-th line is $w_{i,j} (0 \le w_{i,j} \le 1000)$. Indicating the matrix $W_{n \times n}$.

Output

Output a real number as the answer. If your answer is A while the standard answer is B, your answer will be accepted if and only if $\frac{|A-B|}{\max(|A|,1)} \leq 10^{-6}$.

Examples

standard input	standard output
2	0.250000
0 1	
1 0	
3	0.571429
021	
202	
1 2 0	