A Simple MST Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

For the positive integer x, we define the number of its different prime factors as $\omega(x)$. For example, $\omega(1) = 0, \omega(8) = 1, \omega(12) = 2.$

In this problem, we treat each positive integer as a node. When we build an edge between node x and node y, we will cost $\omega(lcm(x, y))$, where lcm(x, y) represents the least common multiple of x and y.

Next, you will be given T queries. For the *i*-th query we will give two integers l_i, r_i . What you need to answer is, when only considering nodes $l_i, l_i + 1, \dots, r_i$, what is the minimum cost if we build edges so that these $r_i - l_i + 1$ nodes can reach each other.

Note that all of the queries are distinct and in *i*-th query you can only build an edge between x, y when $l_i \leq x, y \leq r_i$.

Input

The first line contains an integer $T(T \le 50000)$, indicating the number of queries.

For the next T lines, the *i*-th line contains two integers $l_i, r_i (1 \le l_i \le r_i \le 10^6)$, indicating a query. It is guaranteed that $\sum_{i=1}^T r_i \le 10^6$.

Output

For each query, output an integer as your answer.

Examples

standard input	standard output
5	0
1 1	2
4 5	3
1 4	9
1 9	1812
19 810	
2	8
27 30	223092
183704 252609	