A Simple MST Problem

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

For the positive integer x, we define the number of its different prime factors as $\omega(x)$. For example, $\omega(1)=0, \omega(8)=1, \omega(12)=2$.
In this problem, we treat each positive integer as a node. When we build an edge between node x and node y, we will cost $\omega(l c m(x, y))$, where $l c m(x, y)$ represents the least common multiple of x and y.

Next, you will be given T queries. For the i-th query we will give two integers l_{i}, r_{i}. What you need to answer is, when only considering nodes $l_{i}, l_{i}+1, \cdots r_{i}$, what is the minimum cost if we build edges so that these $r_{i}-l_{i}+1$ nodes can reach each other.

Note that all of the queries are distinct and in i-th query you can only build an edge between x, y when $l_{i} \leq x, y \leq r_{i}$.

Input

The first line contains an integer $T(T \leq 50000)$, indicating the number of queries.
For the next T lines, the i-th line contains two integers $l_{i}, r_{i}\left(1 \leq l_{i} \leq r_{i} \leq 10^{6}\right)$, indicating a query.
It is guaranteed that $\sum_{i=1}^{T} r_{i} \leq 10^{6}$.

Output

For each query, output an integer as your answer.

Examples

	standard input	standard output
5	0	2
1	1	5
1	4	3
19	9	
19810	1812	
2		
2730	8	
183704	252609	223092

