Trapping Rain Water

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 megabytes

There is a histogram represented by an integer sequence a_1, a_2, \dots, a_n of length n. For the *i*-th bar from left to right, its height is a_i and its width is 1.

We'll perform q modifications to the histogram. The *i*-th modification can be represented by a pair of integers (x_i, v_i) indicating that we'll increase the height of the x_i -th bar by v_i .

After each modification, answer the following query: Calculate how much water this histogram can trap if a heavy rain pours onto it and fills all the pits as much as possible.

More formally, given an integer sequence a_1, a_2, \dots, a_n of length n, the *i*-th modification will increase a_{x_i} by v_i . After each modification, answer the following query: Let $f_i = \max(a_1, a_2, \dots, a_i)$ and $g_i = \max(a_i, a_{i+1}, \dots, a_n)$, calculate

$$\sum_{i=1}^{n} \left(\min(f_i, g_i) - a_i \right)$$

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer n $(1 \le n \le 10^5)$ indicating the number of bars in the histogram.

The second line contains n integers a_1, a_2, \dots, a_n $(1 \le a_i \le 10^6)$ where a_i indicates the initial height of the *i*-th bar.

The third line contains an integer q $(1 \le q \le 10^5)$ indicating the number of modifications.

For the following q lines, the *i*-th line contains two integers x_i and v_i $(1 \le x_i \le n, 1 \le v_i \le 10^6)$ indicating that the *i*-th modification increases the height of the x_i -th bar by v_i .

It is guaranteed that neither the sum of n nor the sum of q of all test cases will exceed 10^6 .

Output

For each modification output one line containing one integer indicating how much rain water this histogram can trap.

Example

standard input	standard output
2	1
6	4
1 2 3 4 5 6	180
2	
1 2	
3 3	
5	
100 10 1 10 100	
1	
3 100	