Suffix Structure

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

For a string $u=u_{1} \ldots u_{n}$, let pre (u, i) be the prefix $u_{1} \ldots u_{i}$. In particular, pre $(u, 0)$ is empty string. For two strings $u=u_{1} \ldots u_{n}$ and $v=v_{1} \ldots v_{m}$, let $u+v$ be the concatenation $u_{1} \ldots u_{n} v_{1} \ldots v_{m}$.
You are given a string $t=t_{1} \ldots t_{m}$ of length m and a tree T with $(n+1)$ vertices labeled with $0,1, \ldots, n$ rooted at vertex 0 . Each edge is associated with a character. Please note that in this problem, the alphabet may contain more than 26 characters.
Consider the following function

$$
f(i, j)=\max \left\{d(x) \mid s_{x} \text { is a suffix of } s_{i}+\operatorname{pre}(t, j)\right\}
$$

where s_{i} be the concatenation of characters on the shortest path from root to vertex i and $d(i)$ be the number of edges on the shortest path from the root to vertex i.
Your task is to compute the values of $g_{1}, g_{2}, \ldots, g_{m}$ where $g_{j}=\sum_{i=1}^{n} f(i, j)$.
Note that s_{0} is the empty string and empty string is a suffix of any string.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(1 \leq n, m \leq 2 \times 10^{5}\right)$.
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(0 \leq p_{i}<i\right)$ where p_{i} indicates the parent of vertex i.
The third line contains n integers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq n\right)$ where c_{i} indicates that the edge from vertex p_{i} to vertex i is associated with the c_{i}-th character from the alphabet. It is guaranteed that $p_{i} \neq p_{j}$ or $c_{i} \neq c_{j}$ for all $i \neq j$.
The fourth line contains m integers $t_{1}, t_{2}, \ldots, t_{m}\left(1 \leq t_{i} \leq n\right)$ where t_{i} is the i-th character of string t.
It is guaranteed that neither the sum of n nor the sum of m will exceed 2×10^{5}.

Output

For each test case output one line containing m integers $g_{1}, g_{2}, \ldots, g_{m}$ separated by a space.
Please, DO NOT output extra spaces at the end of each line, or your solution may be considered incorrect!

Example

standard input	standard output
```2 113 0 1 2 0 4 5 4 6 0 9 10 1 3 2 2 1 3 4 1 3 2 1 3 24 516 0 0 0 1 4 12322 2 1 3 3 2 1 3 2 1 3 2 2 1 1 2 1```	$\begin{array}{lllllllllllllll} 17 & 26 & 22 \\ 8 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 10 \end{array}$

## Note

Let's calculate $f(11,1)$ and $f(11,2)$ in the first sample test case to help you further understand. We have $s_{11}=\{3,2,1\}$ so $s_{11}+\operatorname{pre}(t, 1)=\{3,2,1,3\}$. As $s_{6}=\{2,1,3\}$ is its longest suffix existing in the tree, $f(11,1)=d(6)=3$. Also $s_{11}+\operatorname{pre}(t, 2)=\{3,2,1,3,2\}$ and $s_{3}=\{1,3,2\}$ is its longest suffix existing in the tree, so $f(11,2)=d(3)=3$.

