Suffix Structure

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

For a string $u = u_1 \dots u_n$, let pre(u, i) be the prefix $u_1 \dots u_i$. In particular, pre(u, 0) is empty string.

For two strings $u = u_1 \dots u_n$ and $v = v_1 \dots v_m$, let u + v be the concatenation $u_1 \dots u_n v_1 \dots v_m$.

You are given a string $t = t_1 \dots t_m$ of length m and a tree T with (n + 1) vertices labeled with $0, 1, \dots, n$ rooted at vertex 0. Each edge is associated with a character. Please note that in this problem, the alphabet may contain more than 26 characters.

Consider the following function

 $f(i,j) = \max\{d(x) \mid s_x \text{ is a suffix of } s_i + \operatorname{pre}(t,j)\}$

where s_i be the concatenation of characters on the shortest path from root to vertex i and d(i) be the number of edges on the shortest path from the root to vertex i.

Your task is to compute the values of g_1, g_2, \ldots, g_m where $g_j = \sum_{i=1}^n f(i, j)$.

Note that s_0 is the empty string and empty string is a suffix of any string.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m $(1 \le n, m \le 2 \times 10^5)$.

The second line contains n integers p_1, p_2, \ldots, p_n $(0 \le p_i < i)$ where p_i indicates the parent of vertex i.

The third line contains n integers c_1, c_2, \ldots, c_n $(1 \le c_i \le n)$ where c_i indicates that the edge from vertex p_i to vertex i is associated with the c_i -th character from the alphabet. It is guaranteed that $p_i \ne p_j$ or $c_i \ne c_j$ for all $i \ne j$.

The fourth line contains m integers t_1, t_2, \ldots, t_m $(1 \le t_i \le n)$ where t_i is the *i*-th character of string t.

It is guaranteed that neither the sum of n nor the sum of m will exceed 2×10^5 .

Output

For each test case output one line containing m integers g_1, g_2, \ldots, g_m separated by a space.

Please, DO NOT output extra spaces at the end of each line, or your solution may be considered incorrect!

Example

standard input	standard output
2	17 26 22
11 3	8 5 5 5 5 5 5 5 5 5 5 5 5 10 5
0 1 2 0 4 5 4 6 0 9 10	
1 3 2 2 1 3 4 1 3 2 1	
3 2 4	
5 16	
0 0 0 1 4	
1 2 3 2 2	
2 1 3 3 2 1 3 2 1 3 2 2 1 1 2 1	

Note

Let's calculate f(11, 1) and f(11, 2) in the first sample test case to help you further understand. We have $s_{11} = \{3, 2, 1\}$ so $s_{11} + \operatorname{pre}(t, 1) = \{3, 2, 1, 3\}$. As $s_6 = \{2, 1, 3\}$ is its longest suffix existing in the tree, f(11, 1) = d(6) = 3. Also $s_{11} + \operatorname{pre}(t, 2) = \{3, 2, 1, 3, 2\}$ and $s_3 = \{1, 3, 2\}$ is its longest suffix existing in the tree, so f(11, 2) = d(3) = 3.