Sweet Sugar

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
Prof.Chen is practicing baking cakes now. In the garden of his big house, there is an ingredient tree with n vertices, labeled by $1,2, \ldots, n$. On the i-th vertex of the tree, there are c_{i} sweet sugars.

A cake will consume exactly k sweet sugars. Every time before baking a new cake, Prof.Chen will come to the garden, select a component (or the whole tree) of vertices from a tree, then cut the component down, and take all the sugars from it. When a component is cut down, the original tree may split into several disconnected new trees. Also, note that it is not a good idea to waste sugars, so Prof.Chen will always make sure there are exactly k sugars in the selected component.

Prof.Chen wants to make as many cakes as possible. Please help Prof.Chen to determine how many cakes he can make.

Input

The first line contains a single integer $t\left(1 \leq t \leq 10^{6}\right)$, the number of test cases. For each test case:
The first line contains two integers n and $k\left(1 \leq n \leq 10^{6}, 1 \leq k \leq 2 \cdot 10^{6}\right)$, denoting the number of vertices and the number of sugars in each cake.
The next line contains n integers $c_{1}, c_{2}, \ldots, c_{n}\left(0 \leq c_{i} \leq 2\right)$, denoting the number of sweet sugars on each vertex.
Each of the following $n-1$ lines contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$, describing an undirected tree edge between the u_{i}-th vertex and the v_{i}-th vertex. It is guaranteed that the edges form a tree.
It is guaranteed that the sum of n over all test cases does not exceed 10^{6}.

Output

For each test case, output a single line containing an integer, denoting the maximum number of cakes that Prof.Chen can make.

Example

standard input	standard output
	$\begin{aligned} & \hline 2 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$

