Master of Both IV

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Prof.Chen is the master of arithmetic operations and binary operations. Today's homework for his students, Putata and Budada, is to find the number of non-empty subsequences $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ $\left(1 \leq i_{1}<i_{2}<i_{3} \cdots<i_{m} \leq n, 1 \leq m \leq n\right)$ of sequence $\{1,2, \ldots, n\}$ satisfying that $\forall x \in[1, m], a_{i_{x}} \mid \bigoplus_{j=1}^{m} a_{i_{j}}$, where $\left\{a_{n}\right\}$ is a given sequence.
Here \oplus means bitwise exclusive-or operation, $\bigoplus_{j=1}^{m} a_{i_{j}}$ equals to the bitwise exclusive-or of all elements $a_{i_{j}}$ for $1 \leq j \leq m$. We say $x \mid s$ if and only if there exists an non-negative integer k such that $s=k \cdot x$.
Please help Putata and Budada finish their homework. In order to ruin the legends, please output the answer modulo 998244353.

Input

The first line contains one integer $t\left(1 \leq t \leq 2 \cdot 10^{5}\right)$, denoting the number of test cases.
For each test case, the first line contains one integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$, denoting the length of the sequence.

The second line contains n integers, the i-th integer is $a_{i}\left(1 \leq a_{i} \leq n\right)$, denoting the i-th element in the sequence. It is possible that $a_{i}=a_{j}$ for $i \neq j$.
It is guaranteed that the sum of n over all testcases does not exceed $2 \cdot 10^{5}$.

Output

For each test case, output one integer in one line, denoting the answer.

Example

				standard input		standard output
2					4	
3						
1	2	3				
5						
3	3	5	1	1		

