Easy Diameter Problem

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	1024 megabytes

Randias is given a tree with n vertices. He does the following operation until the tree contains 0 vertices:

- choose a vertex which is an endpoint of any diameter, and then remove it.

He asks you to find the number of removal orders modulo $10^{9}+7$.
Note that two orders are considered different if and only if there exists $i(1 \leq i \leq n)$, where the i-th vertex being removed in one order is different from the i-th vertex being removed in the other order.

Recall that a vertex u is an endpoint of some diameter if there exists a vertex v such that $\operatorname{dis}(u, v) \geq \operatorname{dis}(i, j)$ for any pair of vertices i and j, where $\operatorname{dis}(x, y)$ represents the number of edges in the shortest path from x to y.

Input

The first line contains one integer $n(1 \leq n \leq 300)$, denoting the number of vertices of the tree.
The following $n-1$ lines, each line contains two integers u and $v(1 \leq u, v \leq n, u \neq v)$, denoting an edge connecting u and v.

It is guaranteed that the edges form a tree.

Output

Print a single integer, denoting the number of removal orders modulo $10^{9}+7$.

Examples

	standard input	
3		4
1	2	standard output
3	2	
5	1	28
4	5	
1	2	
1	3	
7		
5	7	116
2	5	
2	1	
1	6	
3	6	
4	1	

Note

For the first example, $[1,2,3],[1,3,2],[3,1,2],[3,2,1]$ are possible removal orders.

