Easy Diameter Problem

Input file:	standard input
Output file:	standard output
Time limit:	2.5 seconds
Memory limit:	1024 megabytes

Randias is given a tree with n vertices. He does the following operation until the tree contains 0 vertices:

• choose a vertex which is an endpoint of any **diameter**, and then remove it.

He asks you to find the number of removal orders modulo $10^9 + 7$.

Note that two orders are considered different if and only if there exists $i \ (1 \le i \le n)$, where the *i*-th vertex being removed in one order is different from the *i*-th vertex being removed in the other order.

Recall that a vertex u is an endpoint of some diameter if there exists a vertex v such that $dis(u,v) \ge dis(i,j)$ for any pair of vertices i and j, where dis(x,y) represents the number of edges in the shortest path from x to y.

Input

The first line contains one integer n $(1 \le n \le 300)$, denoting the number of vertices of the tree.

The following n-1 lines, each line contains two integers u and v $(1 \le u, v \le n, u \ne v)$, denoting an edge connecting u and v.

It is guaranteed that the edges form a tree.

Output

Print a single integer, denoting the number of removal orders modulo $10^9 + 7$.

Examples

standard input	standard output
3	4
1 2	
3 2	
5	28
4 1	
4 5	
1 2	
1 3	
7	116
5 7	
2 5	
2 1	
1 6	
3 6	
4 1	

Note

For the first example, [1, 2, 3], [1, 3, 2], [3, 1, 2], [3, 2, 1] are possible removal orders.