Inverse Problem

$$
\begin{array}{ll}
\text { Input file: } & \text { standard input } \\
\text { Output file: } & \text { standard output } \\
\text { Time limit: } & 45 \text { seconds } \\
\text { Memory limit: } & 1024 \text { megabytes }
\end{array}
$$

Consider the following task. You are given a tree (a connected undirected graph without cycles) with $n(n \geq 1)$ vertices. You need to count the number of correct colorings of its vertices with n colors. A coloring is considered correct if every two vertices separated by at most two edges have different colors. We consider two colorings different if there exists a vertex that has different colors in both of these colorings. As this number can be quite large, you should give its remainder when divided by $10^{9}+7$.
Your task is to solve the inverse problem - given a number r from the interval $\left[1,10^{9}+6\right]$, find any tree with the smallest number of vertices for which the answer to the above problem is the number r. It can be proven that for each possible number r from the given range, there exists at least one such tree.

Input

In the first line of standard input, there is one integer $t(1 \leq t \leq 10)$, representing the number of test cases.
In the next t lines, there is one integer each. The number in the i-th of these lines is $r_{i}\left(1 \leq r_{i} \leq 10^{9}+6\right)$. All values of r_{i} are pairwise distinct.

Output

The output should contain t blocks: the i-th of these blocks should contain an answer for the i-th test case.

The block describing a tree should begin with a line containing a single positive integer $n_{i}-$ the number of vertices in your tree.

In the next $n_{i}-1$ lines of the block, there should be two integers each. The numbers in the j-th of these lines, $a_{i, j}$ and $b_{i, j}\left(1 \leq a_{i, j}, b_{i, j} \leq n_{i}\right)$, should indicate the existence of an edge connecting the vertices with numbers $a_{i, j}$ and $b_{i, j}$. The tree's vertices are numbered with integers from 1 to n_{i}. If there are multiple trees with the minimum number of vertices for which the remainder of the division of the number of colorings by $10^{9}+7$ is r_{i}, you can print any of them.

Example

standard input	standard output
4	2
2	12
360	5
1	12
509949433	23
	34
	35
	1
	10
	12
	23
	34
	45
	56
	67
	78
	89
	910

Note

In the last test case, the number of tree colorings is 1509949440 , which gives 509949433 modulo $10^{9}+7$.

