Cliques

Input file: standard input
Output file: standard output
Time limit: 5 seconds
Memory limit: $\quad 512$ megabytes
Given is a tree \mathcal{T} with n vertices numbered with consecutive natural numbers from 1 to n. Using it, we will create an undirected, initially empty graph \mathcal{G}. There are two types of operations to be performed:
$\bullet+v w(1 \leq v \leq w \leq n)-$ a vertex is added to the graph \mathcal{G}, which is labeled with a pair of numbers (v, w).

- - $v w(1 \leq v \leq w \leq n)$ - one vertex labeled with the pair of numbers (v, w) is removed from the graph \mathcal{G}.

The pairs of numbers written in the vertices of graph \mathcal{G} correspond to paths from the given tree \mathcal{T} these two numbers indicate the indices of the two ends of such a path, and they can be equal if the path consists of a single vertex.

At any given time, two vertices of the graph \mathcal{G} are connected by an edge if the paths from \mathcal{T} corresponding to them have at least one vertex in common. After adding a new vertex to the graph \mathcal{G}, edges are attached to it according to this rule, and when a vertex is removed, all the edges incident to it are also removed.

Your task is, after each operation, to output the number of non-empty subsets of vertices of the graph \mathcal{G} that form cliques. A clique is a subgraph in which every pair of vertices is connected by an edge. Since this number can be very large, it's sufficient to output its remainder when divided by $10^{9}+7$.

Input

The first line of standard input contains one integer $n(2 \leq n \leq 200000)$, indicating the number of vertices of the tree \mathcal{T}.

Each of the next $n-1$ lines contains two integers. The numbers in the i-th of these lines are a_{i} and b_{i} $\left(1 \leq a_{i}, b_{i} \leq n\right)$, indicating the existence in the tree \mathcal{T} of an edge connecting vertices numbered a_{i} and b_{i}. It is guaranteed that the given edges describe a valid tree.

The next line contains one integer $q(1 \leq q \leq 50000)$, indicating the number of modifications to the graph \mathcal{G}.

Each of the next q lines is of one of the two possible types:
$\bullet+v w(1 \leq v \leq w \leq n)-$ a vertex is added to the graph \mathcal{G}, corresponding to the path between vertices v and w of the tree \mathcal{T}.

- - $v w(1 \leq v \leq w \leq n)$ - one vertex corresponding to the path between vertices v and w of the tree \mathcal{T} is removed from the graph \mathcal{G}.

Multiple vertices in the graph \mathcal{G} can have the same pair of numbers written in them. It's guaranteed that when instructed to remove a vertex with a certain pair of numbers, at least one such vertex exists in the graph \mathcal{G}. When instructed to remove, only one vertex with the corresponding path should be removed, even if more of them currently exist.

Output

The output should contain q lines - the i-th of them should contain one integer, the number of non-empty subsets of vertices of the graph \mathcal{G} that form cliques after the i-th modification. This number should be given as a remainder when divided by $10^{9}+7$.

Example

	standard input	standard output
5		1
1	2	3
5	1	7
2	3	3
4	2	7
6		9
+4	5	
+2	2	
+1	3	
-2	2	3
+2	4	
+4		

Note

The tree \mathcal{T} from the sample test looks as follows:

The following figures show the graph \mathcal{G} after consecutive modifications.
The graph \mathcal{G} after the first modification:

The graph \mathcal{G} after the second modification:

Both vertices in \mathcal{G} are connected by an edge because the common vertex in \mathcal{T} for both paths is vertex number 2.

The graph \mathcal{G} after the third modification:

The graph \mathcal{G} after the fourth modification:

The graph \mathcal{G} after the fifth modification:

The graph \mathcal{G} after the last modification:

