# Cliques

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 5 seconds       |
| Memory limit: | 512 megabytes   |

Given is a tree  $\mathcal{T}$  with *n* vertices numbered with consecutive natural numbers from 1 to *n*. Using it, we will create an undirected, initially empty graph  $\mathcal{G}$ . There are two types of operations to be performed:

- +  $v w (1 \le v \le w \le n)$  a vertex is added to the graph  $\mathcal{G}$ , which is labeled with a pair of numbers (v, w).
- -  $v w (1 \le v \le w \le n)$  one vertex labeled with the pair of numbers (v, w) is removed from the graph  $\mathcal{G}$ .

The pairs of numbers written in the vertices of graph  $\mathcal{G}$  correspond to paths from the given tree  $\mathcal{T}$  – these two numbers indicate the indices of the two ends of such a path, and they can be equal if the path consists of a single vertex.

At any given time, two vertices of the graph  $\mathcal{G}$  are connected by an edge if the paths from  $\mathcal{T}$  corresponding to them have at least one vertex in common. After adding a new vertex to the graph  $\mathcal{G}$ , edges are attached to it according to this rule, and when a vertex is removed, all the edges incident to it are also removed.

Your task is, after each operation, to output the number of non-empty subsets of vertices of the graph  $\mathcal{G}$  that form cliques. A clique is a subgraph in which every pair of vertices is connected by an edge. Since this number can be very large, it's sufficient to output its remainder when divided by  $10^9 + 7$ .

### Input

The first line of standard input contains one integer  $n \ (2 \le n \le 200\ 000)$ , indicating the number of vertices of the tree  $\mathcal{T}$ .

Each of the next n-1 lines contains two integers. The numbers in the *i*-th of these lines are  $a_i$  and  $b_i$   $(1 \le a_i, b_i \le n)$ , indicating the existence in the tree  $\mathcal{T}$  of an edge connecting vertices numbered  $a_i$  and  $b_i$ . It is guaranteed that the given edges describe a valid tree.

The next line contains one integer q ( $1 \le q \le 50\,000$ ), indicating the number of modifications to the graph  $\mathcal{G}$ .

Each of the next q lines is of one of the two possible types:

- +  $v w (1 \le v \le w \le n)$  a vertex is added to the graph  $\mathcal{G}$ , corresponding to the path between vertices v and w of the tree  $\mathcal{T}$ .
- -  $v w (1 \le v \le w \le n)$  one vertex corresponding to the path between vertices v and w of the tree  $\mathcal{T}$  is removed from the graph  $\mathcal{G}$ .

Multiple vertices in the graph  $\mathcal{G}$  can have the same pair of numbers written in them. It's guaranteed that when instructed to remove a vertex with a certain pair of numbers, at least one such vertex exists in the graph  $\mathcal{G}$ . When instructed to remove, only one vertex with the corresponding path should be removed, even if more of them currently exist.

## Output

The output should contain q lines – the *i*-th of them should contain one integer, the number of non-empty subsets of vertices of the graph  $\mathcal{G}$  that form cliques after the *i*-th modification. This number should be given as a remainder when divided by  $10^9 + 7$ .

## Example

| standard input | standard output |
|----------------|-----------------|
| 5              | 1               |
| 1 2            | 3               |
| 5 1            | 7               |
| 2 3            | 3               |
| 4 2            | 7               |
| 6              | 9               |
| + 4 5          |                 |
| + 2 2          |                 |
| + 1 3          |                 |
| - 2 2          |                 |
| + 2 3          |                 |
| + 4 4          |                 |

#### Note

The tree  ${\mathcal T}$  from the sample test looks as follows:



The following figures show the graph  ${\mathcal G}$  after consecutive modifications.

The graph  ${\mathcal G}$  after the first modification:



The graph  ${\mathcal G}$  after the second modification:

Both vertices in  $\mathcal{G}$  are connected by an edge because the common vertex in  $\mathcal{T}$  for both paths is vertex number 2.

The graph  $\mathcal{G}$  after the third modification:



The graph  ${\mathcal G}$  after the fourth modification:



The graph  ${\mathcal G}$  after the fifth modification:



The graph  ${\mathcal G}$  after the last modification:

