Uni Cup

Problem K. Keychain

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	256 mebibytes

Consider a two-dimensional plane and n points p_1, \ldots, p_n on it. Consider n circles C_1, C_2, \ldots, C_n : the *i*-th circle is centered at p_i . All the radii of the n circles are R.

Determine the minimum value of R such that one can draw another generalized circle Γ that intersects all the n circles. Please find one such Γ as well.

- A circle C with radius r contains all points such that the Euclidean distance between the point and the center of the circle is exactly r.
- A generalized circle is either a circle or a straight line.
- We say two objects A and B intersect if they share a common point.

Input

The first line contains an integer n $(1 \le n \le 3000)$. On each of the next n lines, there will be two integers x_i and y_i indicating the coordinates of point p_i $(0 \le x_i, y_i \le 10^5)$. It is guaranteed that no two given points coincide.

Output

On the first line, print the optimal answer R_{opt} .

Your output should satisfy $0 \le R_{opt} \le 10^5$.

It can be proved that the minimum value exists and is in this range.

Suppose that Γ_{opt} intersects all C_1, \ldots, C_n when $R = R_{opt}$.

It can be shown that, under the constraints in this problem, Γ_{opt} can be chosen to be either a circle centered at a rational coordinate, or a straight line with integer coefficients.

• In the circle case, print "C X Y Z r", which means that the radius is r, and the center of the circle is O = (X/Z, Y/Z).

The values X, Y, Z must be integers with absolute value not greater than 10^{18} . The value r should be a non-negative real number not greater than 10^{18} .

• In the straight line case, print "L a b c", which means that the line L satisfies the equation ax + by = c.

The values a, b, c must be integers with absolute value not greater than 10^{18} .

When checking your answer, the jury will first check whether Γ_{opt} intersects each of the C's. This will be judged by checking:

- if $|R r| \varepsilon \leq d(O, p_i) \leq R + r + \varepsilon$ in the circle case $(d(O, p_i))$ is the Euclidean distance between p_i and O,
- or $R \leq d(L, p_i) + \varepsilon$ in the line case $(d(L, p_i))$ is the distance from point p_i to line L).

Here, $\varepsilon = 10^{-6}$.

After that, your answer will be considered correct if the absolute or relative error between your R_{opt} and jury's R_{opt} doesn't exceed 10^{-6} .

Examples

standard input		
4		
2 1		
1 3		
2 4		
7 2		
standard output		
0.27069063257455492223		
C 1152 720 288 2.77069063257455492234		
standard input		
7		
26919 7739		
85584 91359		
47712 21058		
13729 26355		
16636 96528		
88747 93023		
46770 1150		
standard output		

9663.87959749101919015857

C 3605577680770432 5873755742321056 96368792608 50864.33205303458045065668

standard input	
10	1
756 624	
252 208	
504 416	
378 312	
203 287	
329 391	
0 0	
707 703	
126 104	
581 599	
standard output	
46.05915288207108030175	
L -1248 1512 90300	

Note

Be careful of overflow. Consider using long double or $__int128.$