Problem K. Keychain

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
10 seconds
256 mebibytes

Consider a two-dimensional plane and n points p_{1}, \ldots, p_{n} on it. Consider n circles $C_{1}, C_{2}, \ldots, C_{n}$: the i-th circle is centered at p_{i}. All the radii of the n circles are R.
Determine the minimum value of R such that one can draw another generalized circle Γ that intersects all the n circles. Please find one such Γ as well.

- A circle C with radius r contains all points such that the Euclidean distance between the point and the center of the circle is exactly r.
- A generalized circle is either a circle or a straight line.
- We say two objects A and B intersect if they share a common point.

Input

The first line contains an integer $n(1 \leq n \leq 3000)$. On each of the next n lines, there will be two integers x_{i} and y_{i} indicating the coordinates of point $p_{i}\left(0 \leq x_{i}, y_{i} \leq 10^{5}\right)$. It is guaranteed that no two given points coincide.

Output

On the first line, print the optimal answer $R_{\text {opt }}$.
Your output should satisfy $0 \leq R_{\text {opt }} \leq 10^{5}$.
It can be proved that the minimum value exists and is in this range.
Suppose that $\Gamma_{\text {opt }}$ intersects all C_{1}, \ldots, C_{n} when $R=R_{\text {opt }}$.
It can be shown that, under the constraints in this problem, $\Gamma_{o p t}$ can be chosen to be either a circle centered at a rational coordinate, or a straight line with integer coefficients.

- In the circle case, print "C $X Y Z r$ ", which means that the radius is r, and the center of the circle is $O=(X / Z, Y / Z)$.
The values X, Y, Z must be integers with absolute value not greater than 10^{18}. The value r should be a non-negative real number not greater than 10^{18}.
- In the straight line case, print "L $a b c$ ", which means that the line L satisfies the equation $a x+b y=c$.
The values a, b, c must be integers with absolute value not greater than 10^{18}.
When checking your answer, the jury will first check whether $\Gamma_{\text {opt }}$ intersects each of the C 's. This will be judged by checking:
- if $|R-r|-\varepsilon \leq d\left(O, p_{i}\right) \leq R+r+\varepsilon$ in the circle case $\left(d\left(O, p_{i}\right)\right.$ is the Euclidean distance between p_{i} and O),
- or $R \leq d\left(L, p_{i}\right)+\varepsilon$ in the line case $\left(d\left(L, p_{i}\right)\right.$ is the distance from point p_{i} to line $\left.L\right)$.

Here, $\varepsilon=10^{-6}$.
After that, your answer will be considered correct if the absolute or relative error between your $R_{\text {opt }}$ and jury's $R_{\text {opt }}$ doesn't exceed 10^{-6}.

The 2nd Universal Cup

Examples

	standard input						
4							
2	1						
1	3						
2	4						
7	2						
standard output							
0.27069063257455492223							
C 11527202882.77069063257455492234							

standard input		
10		
756	624	
252	208	
504	416	
378	312	
203	287	
329	391	
0		
707	703	
126	104	
581	599	
46.05915288207108030175		
L -1248 1512 90300		

Note

The first two examples:

Be careful of overflow. Consider using long double or __int128.

