Problem A. Greedy Bipartite Matching

Input file:	standard input
Output file:	standard output
Time limit:	10 seconds
Memory limit:	1024 mebibytes

Consider a bipartite weighted graph with $2 n$ vertices: n in the left part and n in the right part. The vertices in each part are numbered from 1 to n. A matching is called greedy if it has the maximal number of edges of weight 1 among all matchings, the maximal number of edges of weight 2 among all matchings that maximize the number of edges of weight 1, etc.

Your task is to find the size (number of edges) of greedy matching in a dynamically growing graph.

Input

The first line of the input contains two non-negative integers n and $q\left(n \leq 10^{5}, q \leq 10^{3}\right)$: the number of vertices in each part and the number of different weights of the edges.

Then, the input consists of q blocks. The i-th block starts with a non-negative integer m_{i} : the number of edges of weight i. Each of the next m_{i} lines contains two integers x and $y(1 \leq x, y \leq n)$, which add an edge between vertex x of the left part and vertex y of the right part. It is guaranteed that $\sum_{i} m_{i} \leq 2 \cdot 10^{5}$.

Note that there may be multiple edges between two vertices.

Output

You have to output q integers on a single line: answers for the problem for weights at most 1 , weights at most $2, \ldots$, weights at most q.

Example

standard input	standard output
34	1223
2	
11	
12	
2	
11	
22	
2	
13	
32	
1	
33	

