



# Problem C. Cryptography Problem

| Input file:   | standard input  |
|---------------|-----------------|
| Output file:  | standard output |
| Time limit:   | 5 seconds       |
| Memory limit: | 1024 megabytes  |

You are given m equations of the form

 $a_i \cdot x + err_i \equiv c_i \pmod{p}.$ 

Here,  $err_i$  is an unknown random error term, chosen uniformly at random from  $-\lfloor \frac{p}{200} \rfloor, \ldots, \lfloor \frac{p}{200} \rfloor$ , while  $a_i, c_i$  and p are known to you.

You know that these equations hold for some unknown integer x. Find one such x.

## Input

In the first line,  $T~(1 \leq T \leq 500)$  — the number of test cases. For each test case:

- In the first line,  $m, p \ (50 \le m \le 100, 10^{15} \le p \le 10^{18})$ .
- In the next m lines,  $a_i, c_i \ (0 \le a_i, c_i \le p-1)$ .
- It's guaranteed that p is a prime,  $a_i, x$  are chosen uniformly at random from 0 to p-1, and  $c_i$  is computed by  $(a_i \cdot x + err_i) \mod p$ ,  $err_i$  is an integer chosen uniformly at random from  $-\lfloor \frac{p}{200} \rfloor, \ldots, \lfloor \frac{p}{200} \rfloor$ .

# Output

For each test case, one integer — the answer. If there are multiple solutions, you may output any.

#### Example

| standard input                        | standard output    |
|---------------------------------------|--------------------|
| 1                                     | 578607642570710976 |
| 50 922033901407246477                 |                    |
| 492300877907148697 8585039545574817   |                    |
| 36478175140515505 237143454432095134  |                    |
| 537753813197233578 694568987600933631 |                    |
|                                       |                    |
| (truncated)                           |                    |
|                                       |                    |

## Note

The full sample test case is available in the contest system.