Problem F. Vacation

Input file:
Output file:
Time limit:
standard input
Memory limit:
standard output
4 seconds
1024 megabytes

Prof. Pang has an annual leave of c days and he wants to go on vacation.
Now there are n days in a year. Prof. Pang can gain a_{i} happiness if he rests on the i-th day. The values of happiness, a_{i}, may be negative.
Prof. Pang wants you to do m operations:

- $1 x y$, change the happiness of the x-th day to y.
- $2 l r$, Prof. Pang wants to find a period of vacation in $[l, r]$. He wants to rest for several (possibly 0) days in a row and gain as much happiness as possible. However, he only has c days off, thus he can rest for no more than c consecutive days in $[l, r]$.

That means he wants to find

$$
\max \left(\max _{\substack{l \leq \leq^{\prime} \leq r^{\prime} \leq r \\ r^{\prime}-l^{\prime}+1 \leq c}}\left(\sum_{i=l^{\prime}}^{r^{\prime}} a_{i}\right), 0\right)
$$

Input

The first line contains three integers $n, m, c\left(1 \leq n \leq 2 \times 10^{5}, 1 \leq m \leq 5 \times 10^{5}, 1 \leq c \leq n\right)$ indicating the number of days in a year, the number of operations, and Prof. Pang's annual leave days.

The next line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$ indicating the values of happiness of every day.

The next m lines are the m operations in the format described above.
It is guaranteed that $1 \leq x \leq n,-10^{9} \leq y \leq 10^{9}, 1 \leq l \leq r \leq n$.

Output

For each operation of the second type, print the answer.

Example

		standard input		standard output	
5	6	3		8	
0	-5	-3	8	-3	10
2	3	5		0	
1	2	5		5	
2	1	5			
1	4	-3			
2	3	5			
2	1	5			

