

Problem M. Matrix Counting

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	1024 mebibytes

We call an $n \times n$ matrix containing only 0s and 1s *bad* if and only if it contains exactly one 1 in each row and column.

Bad	Bad	Bad	Not Bad	Not Bad	Not Bad
$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Define B to be a subrectangle of an $n \times n$ matrix A if and only if there exist $1 \leq l_1 \leq r_1 \leq n$ and $1 \leq l_2 \leq r_2 \leq n$ such that

- B is a $(r_1 l_1 + 1) \times (r_2 l_2 + 1)$ matrix.
- $B_{i,j} = A_{l_1+i-1,r_1+j-1} \ (1 \le i \le r_1 l_1 + 1, 1 \le j \le r_2 l_2 + 1)$

A	В	Explanation						
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$						
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$						
$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	Not a subrectangle						

Given two integers n and m, you want to calculate how many $n \times n$ matrices M containing only 0s and 1s are there such that:

- 1. M is bad,
- 2. all its subrectangles of size $k \times k$ (k = m + 1, m + 2, ..., n 1) are not bad.

Since the answer can be large, output it modulo 998 244 353.

Input

The first line contains two integers n and $m \ (1 \le m < n \le 10^5)$.

Output

Output a single line containing a single integer, indicating the answer modulo 998 244 353.

Examples

standard input	standard output						
3 2	6						
4 2	4						
300 20	368258992						
100000 1	91844344						

Note

In the first example, there are 6 *bad* matrices. The second condition does not matter since m + 1 = 3 > n - 1 = 2. So the answer is 6.

In the second example, there are 4 matrices satisfying the conditions:

0	1	0	0	ΓΟ	0	1	0	<u>Г</u> 0	0	1	0	Γ0	1	0	0
0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	0
1	0	0	0		0	0	1	1	0	0	0	0	0	0	1
	0	1	0	[0	1	0	0	0	1	0	0	0	0	1	0