Problem M. Matrix Counting

Input file:
Output file:
Time limit:
Memory limit:
standard input standard output
5 seconds
1024 mebibytes

We call an $n \times n$ matrix containing only 0s and 1s bad if and only if it contains exactly one 1 in each row and column.

Bad	Bad	Bad	Not Bad	Not Bad	Not Bad
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$	$\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Define B to be a subrectangle of an $n \times n$ matrix A if and only if there exist $1 \leq l_{1} \leq r_{1} \leq n$ and $1 \leq l_{2} \leq r_{2} \leq n$ such that

- B is a $\left(r_{1}-l_{1}+1\right) \times\left(r_{2}-l_{2}+1\right)$ matrix.
- $B_{i, j}=A_{l_{1}+i-1, r_{1}+j-1}\left(1 \leq i \leq r_{1}-l_{1}+1,1 \leq j \leq r_{2}-l_{2}+1\right)$

A		B
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$	$\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{lll}1 & \mathbf{0} & \mathbf{0} \\ 0 & \mathbf{0} & \mathbf{1} \\ 0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$	$\left[\begin{array}{lll}\mathbf{1} & \mathbf{0} & 0 \\ \mathbf{0} & \mathbf{0} & 1 \\ 0 & 1 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$	Not a subrectangle

Given two integers n and m, you want to calculate how many $n \times n$ matrices M containing only 0 s and 1s are there such that:

1. M is bad,
2. all its subrectangles of size $k \times k(k=m+1, m+2, \ldots, n-1)$ are not bad.

Since the answer can be large, output it modulo 998244353.

Input

The first line contains two integers n and $m\left(1 \leq m<n \leq 10^{5}\right)$.

Output

Output a single line containing a single integer, indicating the answer modulo 998244353.

Examples

standard input	standard output
32	6
42	4
30020	368258992
1000001	91844344

Note

In the first example, there are 6 bad matrices. The second condition does not matter since $m+1=3>n-1=2$. So the answer is 6 .

In the second example, there are 4 matrices satisfying the conditions:
$\left.\begin{array}{|cccc}{\left[\begin{array}{lll}0 & 1 & 0\end{array} 0\right.} \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

