
45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

Problem Tutorial: “Anti-Plagiarism”
The problem is to check if the first tree has a subgraph isomorphic to the second tree.

Let’s try to solve the problem with any asymptotics, and then remove everything unnecessary from the
solution.

Let’s make the first tree rooted, and solve the problem using dynamic programming on its subtrees. Let
dp[u][x → v], where u is the vertex of the first tree, and x → v is the oriented edge of the second tree -
be true or false - is it possible to match the vertices u and v, while matching a subtree of u to a subtree
of v, if the second tree had a root x. In this way we are matching the edges p(u)→ u and x→ v.

To calculate such dynamic, we need the values of all dp[u′][v → v′], where u′ is the son of u, and v′ is the
son of v if the tree is rooted in x. In this case, the calculation itself is a check whether there is a matching
in the bipartite graph that covers the left part.

Such dynamic works very slowly, and does not give an answer to the problem. Let’s fix both of this
problems at once.

Let’s look at the calculation of all states of the dynamic of the form dp[u][x → v], for different x. To
calculate them, we are looking for a matching for graphs with the same right part, and the left part,
which differs in one vertex.

Instead, let’s immediately run a matching on a graph with all vertices, that is, only once for a pair of
vertices u, v. If we have found a matching that covers the left part, then the answer to the whole problem
is ”Yes”, if we could not cover at least 2 vertices, then the value of all dp[u][x → v] - is false, if we were
able to cover all vertices except one, then we will run one dfs from it, which goes to the right along any
edges, and to the left only along those taken in the matching, so we will find all the vertices x, such that
dp[u][x→ v] = true.

The solution ends here, it remains only to estimate its running time - we run one matching algorithm for
each pair of vertices u, v. Let’s calculate the maximum possible number of edges in all obtained graphs,
i.e.

∑
u,v deg(u) · deg(v) =

∑
u deg(u) · 2 ·m = 4 · n ·m.

If we honestly evaluate Kuhn’s algorithm, then we get the asymptotics of the entire solution O(n ·m2),
however, on specific graphs, Kuhn’s algorithm actually runs a lot faster, so such a solution is already
good enough. If you really want to write an asymptotically faster solution, write Dinitz algorithm ot get
a solution in O(n ·m ·

√
m).

Problem Tutorial: “Bit Component”
Consider n > 3 (small cases are obvious).

Let 2k ≤ n < 2k+1. We will prove that for 2k ≤ n ≤ 2k + 2k−1 there is no good permutation and for
2k + 2k−1 + 1 ≤ n < 2k+1 such permutation exists.

It is quite clear that there isn’t a good permutation for 2k ≤ n ≤ 2k + 2k−1− 1 because the leftmost ones
can’t be connected to any other ones.

If n = 2k + 2k−1 then there is only one number which might connect the leftmost ones to others - n itself.
But then all the numbers with leftmost ones must be located on one side of n (otherwise it wouldn’t
connect the leftmost ones to the other ones). Then their right ones can’t be connected to their leftmost
ones (because in these numbers there aren’t ones in the position k − 1 and in n there aren’t ones in the
positions from 0 to k − 2).

We will construct the good permutation for 2k + 2k−1 + 1 ≤ n < 2k+1 by induction. Also, we will require
that for n = 2k+1 − 1 the permutation will start with n and end with 1.

Base: n = 7, permutation 7, 5, 4, 6, 2, 3, 1.

Now k ≥ 3. The permutation for 2k + 2k−1 + 1:

• 2k + 2k−1

Page 1 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

• 2k

• Permutation for 2k−1 − 1, but 2k added to all numbers

• 2k + 2k−1 + 1

• Permutation for 2k − 1

The ones are connected because the permutation for 2k−1 − 1 ends with 1, so all the ones are connected
to the rightmost one in 2k + 2k−1 + 1, all the leftmost ones are connected to the left ones in it. And then
the permutation for 2k − 1 starts with the number 2k − 1, so it connects the ones in positions from 0 to
k − 1.

To construct a permutation for n > 2k + 2k−1 + 1 we will take a permutation for 2k + 2k−1 + 1 and insert
the number 2k + 2k−1 + x (1 ≤ x < 2k−2) to the position adjacent to the position of the number 2k + x.
Since the one in the position k − 1 is connected to the one in the position k and all the other ones are
same as in the number 2k + x, the component remains connected.

To construct a permutation for n = 2k+1−1 we will take a permutation for n = 2k+1−2 and add number
n in the beginning. So it will start with n and end with 1.

Construction of the described permutation can be done in O(n) time.

Problem Tutorial: “Crossing the Border”
First, let’s solve the problem in O(3n):

Let’s sort the items in descending order by cost, now the cost of the knapsack depends on the leftmost
item in it. Also for each mask we will calculate the total weight of the items in it.

Let dp[mask] be the minimum cost of transporting all items in mask, as well as the number of ways to
achieve it.

To find the value of dp[mask], it is enough to iterate over the submasks containing the most significant
bit (to calculate each method once) as items in the next knapsack.

To speed up the solution, let’s iterate over the ”intermediate” mask. Let’s represent it as a concatenation
of two masks L and R, of lengths n

2 . The idea is to relax all the values of dp[LR′] using all the values of
dp[L′R], where L′ is a submask of L containing the most significant bit of L and R′ - supermask of R.

To do this, in advance for each mask L we find all its submasks L′ that do not contain it’s most significant
bit, and sort them in descending order of their weight, that is, in ascending order of the weight of the
difference between L and L′. Similarly, for all masks R let’s iterate over all their supermasks R′ and sort
them in descending order of weight, that is, by descending weight of the difference between R′ and R.
This step takes at most O(3

n
2 · n).

Now, having the intermediate LR mask, we will iterate over the LR′ masks in the calculated order, in
which case their values will need to be relaxed through the prefix of L′R masks (again, in the calculated
order). This can be done using two pointers.

Also, we should not forget about masks of the form 0R, for which there will be no most significant bit in
the left half, but their values can be separately calculated in O(3

n
2).

Let us estimate the asymptotics of the solution. We can assume that for each mask R we iterate through
all the pairs L,L′, and also, independently, for each mask L we iterate through all the pairs R,R′. Thus
the asymptotics of the solution is O(2

n
2 · 3

n
2) or O(

√
6
n
)

Problem Tutorial: “Dinosaur Bones Digging”
We have to find maximum maxl≤i≤rai · |{l ≤ j ≤ r : aj > ai}| among all the query segments. It means
that if we add all the subsegments of segments to the queries the answer won’t change.

Page 2 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

Then let’s find Rj - the largest right border of the segment starting in j among the segments in the
extended set of segments. We will consider only segments [j, Rj] from now on. The answer remains the
same.

The number on the position i can appear in the segments which satisfy j ≤ i ≤ Rj . Since Rj form a
non-decreasing array, number on the position i appears in segments [j, Rj] for l ≤ j ≤ i for some l (or it
doesn’t appear in any segment at all).

To find the answer for the problem we will find for each element ai the maximum number of elements
strictly larger than ai in one segment.

If we scan through all the numbers in decreasing order, we can maintain the amount of numbers larger
than x in all the segments in some data structure (segment tree). On each step for number ai we will
relax the answer with ai multiplied by the maximum in the subsegment of that data structure and then
add one to that subsegment.

This solution works in O(q + n · logn).

Problem Tutorial: “Egg Drop Challenge”
We will calculate dp[i] - minimum time required for the i-th person to catch an egg. It is clear that in the
optimal dp[i] if the i-th person catches an egg that was thrown by j-th person, than either j-th person
should be throwing the egg with maximum possible speed (vj), or i-th person should be catching the egg
with maximum possible speed (ui), because otherwise j-th person could’ve thrown it faster and the time
spent would be less.

We can distinguish this cases with inequality u2j + 2 · hj ≤ v2i + 2 · hi

• If the condition is satisfied, we should relax dp[i] with dp[j]− uj +
√
u2j + 2 · (hj − hi)

• Otherwise, we should relax dp[i] with dp[j]−
√
v2i + 2 · (hi − hj) + vi (if the value under the root is

non-negative)

To support the relaxations of the second type, we will make a structure similar to Li Chao Tree. We can see
that we should find minimum value among the functions which can be represented as fj(x) = aj−

√
bj + x

in the point x = v2i + 2 · hi, where aj = dp[j], bj = −2 · hj , the domain of fj(x) is [2 · hj ,∞). Also, there
is a special condition - we should relax dp[i] throw fj(x) only if u2j + 2 · hj > v2i + 2 · hi, this inequality
actually meaning that x < u2j + 2 · hj . That’s why we will define fj(x) on [2 · hj , u2j + 2 · hj). Now we just
have to find minimum value among fj(x) to relax dp[i] with it +vi.

The structure will support two operations:

• Add a function a−
√
b+ x on [l, r]

• For x find minimum fj(x) among functions in the structure

All the x from the queries are known in advance: v2i + 2 · hi for all i. We will build a segment tree on
these points. Just like in ordinary Li Chao Tree we will store a function in each segment tree node, and
for each point x an optimal function will be somewhere among the nodes on the path from root to leaf x.
Since two functions can intersect only in one point, this structure works just like ordinary Li Chao Tree
with operation of adding a function on subsegment in O(log2 n).

The relaxations of first type are more complicated. Similarly, we have to find minimum value among the
functions which can be represented as fj(x) = aj +

√
bj + x in the point x = −2 ·hi, where aj = dp[j]−uj ,

bj = u2j + 2 · hj and the domain of fj(x) is [−u2j − 2 · hj ,∞), but here we also have to support an extra
condition u2j + 2 · hj ≤ v2i + 2 · hi.

That’s why we will sort the people by value u2j + 2 · hj , so the query is finding minimum among the
functions with their indices j on the prefix of array. For it we will maintain a Fenwick Tree storing Li

Page 3 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

Chao Trees. We will add function in the position of j (which actually causes O(log n) additions to Li
Chao Tree), and find minimum among up to O(log n) Li Chao Trees to find real minimum. So, the adding
operations work in O(log3 n), operations to find minimum work in O(log2 n).

There is a way to speed up the adding operations. We can see that all the queries we make are done in the
points −2 ·hi, while calculating dp[i] for i from n to 1, meaning that these xi form an increasing sequence.
Also, each next add operation is adding a function on subsegment [−u2j − 2 · hj ,∞), while all the actual
queries will be only on [−2 · hj ,∞). That’s why the Li Chao Trees we are using have an extra parameter
- T , so that at any moment of time all the added functions are defined on [T,∞) and all the queries are
in [T,∞) and T is increasing over time. That’s why in the operations inside the Li Chao Tree we will
just consider that instead of the original points xi all the points are max(T, xi). Now, instead of adding
a function on a subsegment we will add a function on the whole structure. The add operation works in
O(log n), with all the additions from Fenwick Tree it works in O(log2 n).

So, the total time is O(n log2 n).

Problem Tutorial: “Fortune Wheel”
In this problem there are K deterministic turns and one random. It is obvious that a strategy which does
some deterministic turns and then the random one is not optimal. It means that the optimal strategy is
either consisting of only deterministic steps or does some random turns and then the deterministic ones.

For each position x, dx - the minimum number of deterministic turns required to reach 0 can be calculated
with bfs in O(n ·K) time.

If the optimal strategy doesn’t have random turns at all, the problem is solved. Otherwise, there is some
set Sk of such positions, that if we got into one of them after k-th random turn we will start making
deterministic turns to reach 0. Let sumk be the sum of the dx among Sk, szk be the size of Sk. Then the
expected value of number of moves is 1 + sum1

n + n−sz1
n · (...), where the (...) is the same sum for 2, 3 and

so on. But we can see that the rest of the sum is defined the same as the whole sum. It means that the
optimal S1 is same as optimal S2 and so on.

And then we just have to solve an equation X = 1 + sum1
n + n−sz1

n ·X. X = n+sum1
sz1

. It means that the
optimal S1 consists of sz1 positions with minimum dx. We can just iterate over all the possible sz and
relax the answer with n+sum

sz where sum is the sum of sz minimum dx.

The solution works in O(n ·K)

Problem Tutorial: “Growing Sequences”
Let dp[n][k] be the number of arrays of length n satisfying the condition and starting with k. For 1 ≤ k ≤ c,
dp[1][k] = 1.

Then we can calculate dp[n][k] =
∑c

i=2·k dp[n− 1][i]

It can be proved by induction that dp[n][k] is actually some polynomial Pn(k) defined on numbers from
1 to b c

2n−1 c. (and for numbers greater than b c
2n−1 c dp[n][k] = 0)

It is true for dp[1][k], P1(k) = 1.

For n,

dp[n][k] =
c∑

i=2·k
dp[n− 1][i] =

b c
2n−2 c∑
i=2·k

dp[n− 1][i]

This sum is not zero only for 2 · k ≤ b c
2n−2 c, k ≤ b c

2n−1 c. Let c′ = b c
2n−2 c

Let Pn−1(k) =
∑m

i=0 aik
i.

Let Qn(k) =
∑k

i=1 i
n. It is a polynomial of degree n+ 1.

Page 4 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

dp[n][k] =

c′∑
i=2·k

Pn−1(i) =

c′∑
i=2·k

m∑
j=1

aji
j =

m∑
j=1

aj

c′∑
i=2·k

ij =

m∑
j=1

aj(Qj(c
′)−Qj(2 · k − 1))

This sum is a polynomial Pn(k) of degree m+ 1.

The answer is
∑b c

2n−1 c
i=1 Pn(i) which can be found with the usage of Qm(k) too.

We can precalculate the polynomials Qm for 0 ≤ m ≤ n. For example, with Lagrange interpolating
polynomial in O(n3) time.

Then calculation of Pn(k) from Pn−1(k) works in O(m3) where m is the degree of Pn−1(k). Then the
calculation of all the polynomials Pn(k) works in O(n4).

Problem Tutorial: “Hierarchies of Judges”
The task was to calculate the number of labeled rooted trees, where all vertices are either reliable or
unreliable, relative order of unreliable children matters and for every vertex the total number of reliable
vertices constitute at least half of all vertices amongst itself and its children.

Let’s say that reliable vertex has a reliable children and b unreliable children. Then b 6 a+ 1, so if rn is
the number of aforementioned trees with a reliable root and un is the number of trees with an unreliable
root then

rn =
∞∑
a=0

a+1∑
b=0

∑
p1+···+pa+q1+···+qb=n−1

rp1 . . . rpauq1 . . . uqb
1

a!

n!

p1! . . . pa!q1! . . . qb!

(we need to divide by a! because order of reliable vertices doesn’t matter)

Then for EGFs of R and U of the sequences {rn}∞n=0 and {un}∞n=0 we get

R = x
∞∑
a=0

Ra

a!

a+1∑
b=0

U b = x
∞∑
a=0

Ra

a!

1− Ua+2

1− U
=

x

1− U
(eR − U2eRU)

The only difference for an unreliable vertex is that if such vertex has a reliable and b unreliable children
that b 6 a− 1, so for U we get

U = x

∞∑
a=0

Ra

a!

a−1∑
b=0

U b =
x

1− U
(eR − eRU)

Now we have two closed-form equation on two generating functions, if we solve them then we solve the
problem. The rest of the editorial will be about solving this system.

We use the approach similar to Newthon’s method. Finding the first two coeffitients of R and U is trivial.
Then we assume that we know both R and S modulo xn so R = R0 + xnR1 and U = U0 + xnU1

where R0 and U0 are known and we want to find R1 and U1 modulo xn. We want to preserve the form
of α + xnβR1 + xnγU1 with some known α, β and γ through all of our multiplications, inversions and
exponents, so we look at our equations modulo x2n. The form naturally preserves through multiplications
because all the non-linear in respect to R1 and U1 (R1U1 also counts) are also divisible by x2n, so they

cancel out. And it preserves through any analytic (such as ex of
1

1 + x
) function, since, like in Newthon’s

method, for any analytic function H(x), H(f(x) + xng(x)) = H(f(x)) + xng(x)H ′(f(x)) (mod x2n). In
our case f is known and g is linear in respect to R1 and U1 with known coefficients.

After we remove all the brackets in all the functions in our equations, we are left with a system of
linear equations on R1 and U1 modulo xn (after we divide by xn both the module and the equations).
If we explicitly write them, we will see that the determinant is not divisible by x, so this system is
easily solvable since we can divide formal power serieses. Note that this modification of the Newthon’s

Page 5 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

method isn’t problem-specific and can solve any solvable system of functional equations with calculatable
functions.

Like in Newthon’s method the time complexity is O(n log n) but with a very large constant.

Also, to reduce both running time of the program and complexity of the formulas that we write on paper,
we can replace our formulas with R−U and R−U3 to cancel one of the exponents in each equation. This
way we get

R− U = x(1 + U)eRU

and
R− U3 = x(1 + U)eR

which are much easier to deal with.

Problem Tutorial: “Institute”
Let’s leave only the vertices that are reachable from the first one along any edges, that is, those vertices
that can be reached at all.

After that, let’s remove all the edges for which a pass is needed. That is, leave only those that you can
walk along after losing the pass.

All that’s left is check whether the graph has a pair of vertices u, v such that v is reachable from u but u is
not reachable from v. That is, is it true that all connected components (assuming all edges are undirected)
are strongly connected.

Problem Tutorial: “Jumping Lights”
This is one of the harder problems in the contest so we will describe the solution first and then prove it
and then find it’s time complexity.

0.1 Algorithm

We will maintain two special structures for the tree. We will call them even tree and odd tree. One of
the trees will be representing the current state of the tree and after the operation 2 (we will call it switch
operation) we will switch the trees and do some additional changes so that all the states of vertices are
correct.

Tree structure has:

• Structure storing the state of all non-leaf vertices (marked or unmarked)

• In each vertex v (which is not a leaf) there is a special structure for its children which are leaves. This
structure will store states of all the leaves and supports operations: get state of vertex, mark/unmark
a vertex, mark/unmark all the vertices, get the number of marked vertices in O(1)

• A number - counter of marked vertices

• In each vertex v (which is not a leaf) there is a special structure storing its unmarked children
(which aren’t leaves). (this can be done with set or a hash-set to support changes in O(log n)) or
O(1))

• A bag - any structure allowing storing vertices to iterate over them and then clear the structure

When some vertex’s (not a leaf) state is changed, in this tree structure some extra things will be done:

• If the vertex is marked, it should be added to the bag

• If the vertex has a parent, it should be added to it’s parents structure storing unmarked children,
or removed from it

Page 6 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

• Update the counter of marked vertices

To complete the first two operations (mark or unmark a vertex v) we will do the following:

• If the vertex is a leaf, we will update it’s state using the special leaves structure and fix the counter
of marked vertices in the current tree. Then we will add its parent to the bags in both trees.

• If the vertex is not a leaf, we will update it’s state as described above. Then we will also add the
vertex to the bags in both trees, add its parent to the bag in the current tree.

To complete the switch operation we will iterate over all the vertices in the bag. For each vertex v we will
do the following:

• Calculate the state it should have in the second tree, and update the state as described above (if
necessary)

• Recalculate the states of its children leaves in the second tree (they all will be either marked or
unmarked)

• If v was marked in the current tree, we will iterate over its unmarked children in the second tree
and mark them all (as described above) and also mark its parent if it was unmarked.

After it we will switch the trees - second becomes the current one and the current one becomes the second.

0.2 Correctness

We will prove the following statements with the induction on time:

• The bag in a tree contains all the vertices (non-leaves) which were unmarked two switch operations
ago and are marked now

• All the maintained states of all the vertices in the current tree are correct

It is obvious that after any operation of first two types (mark or unmark a vertex) the statements remain
true.

Now we will prove that after switch operation the statements remain true. We will consider the difference
between the states of the vertices of the new tree (the states which should be) and the state of the
vertices of the tree right before the previous switch operation (which is currently stored in the second tree
structure).

We will call the current tree T1 (right before the switch), the states of all the vertices right before the
previous switch operation T0 (just a tree without marked vertices if it’s the first switch operation) and the
states of all the vertices after the switch T2. (analogically we will define the tree T−1 : states of vertices
right before switch operation which was before the previous one)

Let v be the vertex, which states are different in T0 and T2.

• It is not a leaf, marked in T0, unmarked in T2. Then all of it’s children were marked right after the
first switch operation. But none of them is marked in T1 (because otherwise v would be marked
in T2). It means that all of them were unmarked manually with the operation of type 0. Then the
vertex v was added to the bag in current tree during that operation. Then its state is recalculated
correctly. (also, here it is added to the bag)

• It is a leaf, marked in T0, unmarked in T2. Similarly to the first case, its parent was marked right
after first switch operation and is unmarked in T1, similarly, its parent was added to the bag in
current tree when it was manually unmarked. Then its state is recalculated correctly.

Page 7 of 8

45th Petrozavodsk Programming Camp, Summer 2023
Day 5: Moscow IPT Yolki-Palki Contest 1, Tuesday, August 29, 2023

• It is not a leaf, unmarked in T0, marked in T2. It means that one of its children or its parent is
marked in T1 - vertex u.

– If u was marked in T−1, v was marked right after switch operation between T−1 and T0, it
means that it was manually unmarked. Then u is in the current bag and v as its parent or its
child will be marked. (or u is a leaf, when it was manually unmarked, its parent - v was added
into both bags)

– If u wasn’t marked in T−1, then according to the first statement, it should be in the current
bag. Then v as its parent or its child will be marked. (or u is a leaf, since v was unmarked
in T0, u was unmarked right after the first switch operation, it means that u was manually
marked, v is in the bag in current tree)

• It is a leaf, unmarked in T0, marked in T2. It means that its parent is marked in T1 - vertex u.

– If u was marked in T−1, v was marked right after switch operation between T−1 and T0, it
means that it was manually unmarked. Then u was added to both bags and v as its child will
be recalculated correctly

– If u wasn’t marked in T−1, then according to the first statement, it should be in the current
bag. Then v will be recalculated correctly

Now the correctness of both statements is proved. It means that the algorithm is working correctly.

0.3 Time complexity

Let sz : the sum of the sizes of both bags, cnt : the number of unmarked vertices in both trees, m : the
number of manually unmarked vertices since the last switch operation. We will define a potential function
Φ = sz + 2 · cnt + 3 ·m.

Then the change of the state of the vertex inside the tree structure works either in 1+1−2 = 0 amortized
time (1 : real time, 1 : add it to the bag, −2 : number of unmarked vertices decreases) if it is marked, or
in 1 + 2 = 3 amortized time (1 : real time, 2 : number of unmarked vertices increases) if it is unmarked.

Then the iteration over all the unmarked children (and unmarked parent if necessary) and marking them
works in 0 amortized time.

Iteration over vertex v in a bag works in:

• Its state remains the same - 1− 1 = 0 amortized time (1 : real time, −1 : decreases the size of the
bag)

• It gets marked - 1− 1 + 0 = 0 amortized time (1 : real time, −1 : decreases the size of the bag, 0 :
amortized time to change its state in the structure)

• It gets unmarked - 1− 1 + 3 = 3 amortized time (1 : real time, −1 : decreases the size of the bag, 3
: amortized time to change its state in the structure)

So the switch operation works in 3 · k amortized time, where k is the number of vertices unmarked during
the iteration over the bag. But, as we could see from the proof above, if the vertex gets unmarked inside
this iteration over vertices, one of its children was manually unmarked somewhere between this switch
operation and the previous switch operation. So, since the potential is decreased by 3 ·m after this switch
operation, it works in ≤ 0 amortized time.

The operations of types 0 and 1 work in up to 1 + 3 + 3 + 3 = 10 amortized time (1 : real time, 3 :
maximum amortized time to change its state in the structure, 3 : maximum increase of the sizes of bags,
3 : if it gets unmarked)

Since Φ ≤ 9 · n, all the operations work amortized in up to 10 · q time, the total time is linear O(n+ q)

(or, if we use sets instead of hash-sets to store the unmarked children of vertices, it works in O((n+q) log n)
time, which in practice works faster)

Page 8 of 8

