
SPb SU Contest: LVII SPb SU Championship

August 27, 2023

SPbSU Contest 27.08.2023 1 / 10

B (I �ipped the Calendar...)

We are interested in the number of days that are Mondays or the �rst
days of the month.

If both events happen, the day is still counted exactly once.

You can use the unbuilt date/time functions. We were kind enough to
make the Year 2038 problem impossible.

Or you can start counting from the 1st of January; you only need to
�gure out on which day of the week the 1st of January lands on.

SPbSU Contest 27.08.2023 2 / 10

E (Fischer's Chess's Guessing Game)

Use a greedy algorithm. Let the current state be the set of positions
that still could be the corrent answer.

Suppose that we guessed a position g .

Distribute the positions from the current state into 9 bin The position
h goes to the bin with a number that would be the Jill's response if
the correct answer was h.

Here the greedy comes: enumerate over all possible g -s and pick g
that minimizes the size of the most �lled bin.

An exhaustive search proves that 5 turns isn't enough.

SPbSU Contest 27.08.2023 3 / 10

F (Forward-Capturing Pawns)

A classic game theory problem (the threefold repetition rule doesn't
change the outcome and only makes all games �nite).

Retrograde analysis. Remember that stalemates are draws (not losses).

Implement all chess rules (both old and new) very carefully.

If your implementation does not �t into the time limit, consider the
following facts.

The positions can be easily encoded as a single number.

A symmetry with respect to a vertical axis doesn't change the
outcome.

You can precompute the answers.

SPbSU Contest 27.08.2023 4 / 10

F (Forward-Capturing Pawns), continuation

You can also try to create a full list of rules that determine the
outcome of the game.

It is very di�cult. For example, it is not true that white win in each
situation where the pawn is defended and there are no immediate
stalemate troubles.

SPbSU Contest 27.08.2023 5 / 10

I (Password)

The simplest problem of the contest. Solved by almost all teams.

We are allowed to make a password fully consisting from non-letters.
Therefore, the maximum number of non-letters is n, where n is the
length of the password.

If we ignore the center requirement, we need at least bn/3c non-letters.
To deal with the center requirement, �ll the center with non-letters;
the remaining string splits into two parts of equal length. By itself,
each part is equivalent to the case with no center requirement.

SPbSU Contest 27.08.2023 6 / 10

K (Poor Students)

A standard min-cost max�ow problem, but the constraints are too big.

Indeed, build a �ow network with two parts: the left one with the
students and the right one with exams. Create an edge from i-th
student to j-th exam with capacity 1 and cost ci ,j . Create
cap = 1, cost = 0 edges from the source to all students. Create a
cap = aj , cost = 0 edges from the j-th exam to the sink.

The standard min-cost max�ow algorithm repeatedly �nds the shortest
path in the residue network. How does it look like? It looks like
s → `0 → r1 → `1 → r2 → . . .→ `u → ru → t. Here, `i are the
students and ri are the exams.

Basically, we take a student `0 and make them pass the exam r1. To
compensate, we take a student `1, who passed r1 but not r2 and
transfer them from r1 to r2, take `2 and transfer them from r2 to r3,
e.t.c.

SPbSU Contest 27.08.2023 7 / 10

K (Poor Students), continuation
Then, for each pair of the courses j and k , we only need to know the
best student we can transfer from j to k . The quality of the student i
is de�ned by ci ,k − ci ,j : the less, the better.

Now, instead of searching for the shortest path in the whole graph, we
can construct a smaller graph on the courses and search for a short
path within the graph (of course, we still need to take the student `0
into account; to do so, keep a best new student for each course).

We have n iterations, each taking O(k3) time (Ford-Bellman in the
course graph).

To construct the graph quickly, keep O(k2) sets (described below).

For each course, order the potential new students by their cost: k sets.

For each pair of courses, order the potential transfers by their cost
(de�ned above): k2 sets.

Each time, at most k students actually transfer. Therefore, we need
to do O(k2) set updates. Total time for set updates: O(nk2 log n).

O(nk3 + nk2 log n) time in total.

SPbSU Contest 27.08.2023 8 / 10

M (Hardcore String Counting)

Denote: gn � the number of good strings of length n, hn � the
number of strings of length n that don't contain w , A := 26 � the
alphabet size, m := |w |.
All good strings are obtained in the following way: take a string that
doesn't contain w and append w . But not all such strings are good.

The problem: the last m letters are not the �rst appearance of w .

Iterate over the �rst appearance.

A border p of a string s � a string that is simultaneously a pre�x and
a su�x of s.

The result: gn = hn−m −
∑

all borders p of w

gn−m+|p|.

SPbSU Contest 27.08.2023 9 / 10

M (Hardcore String Counting), continuation

Also, hn − Ahn−1 = gn. Therefore,
Agn−1 = Ahn−m−1 −

∑
all borders p of w

Agn−m−1+|p|

Subtract. All h-s disappear, because hn−m − Ahn−m−1 = gn−m.

The result is a linear recurrence for g -s with m + O(1) terms.

Compute the n-th term by a standard O(m logm log n) algorithm.

Each time, we take the answer modulo the same polynomial, so we
don't need to invert a series more than once. Then, we have O(log n)
iterations, each taking O(m logm) time, but O(m logm) comes from
a normal polynomial mutliplication and not from a costier inversion.

Also, there is an even faster way to divide by this particular polynomial.
It exploits the fact that border lengths split into O(logm) arithmetic
progressions. However, it wasn't necessary to solve the problem.

SPbSU Contest 27.08.2023 10 / 10

